
MASTER THESIS
Thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Engineering at the Univer-
sity of Applied Sciences Technikum Wien - Degree Program
Information Management and IT Security

SCRAP - Secure Code Review Automated
Platform. Prototype of an automated feed-
back platform to provide secure coding feed-
back for introductory programming courses.

By: Andrea Ida Malkah Klaura, MA BSc

Student Number: 1710303005

Supervisors: Dipl.-Ing.(FH) Mag. DI Christian Kaufmann
Ing. Bernhard Lueger MSc

Wien, April 28, 2020

Declaration

“As author and creator of this work to hand, I confirm with my signature knowledge of the rele-
vant copyright regulations governed by higher education acts (see Urheberrechtsgesetz /Aus-
trian copyright law as amended as well as the Statute on Studies Act Provisions / Examination
Regulations of the UAS Technikum Wien as amended).

I hereby declare that I completed the present work independently and that any ideas, whether
written by others or by myself, have been fully sourced and referenced. I am aware of any con-
sequences I may face on the part of the degree program director if there should be evidence of
missing autonomy and independence or evidence of any intent to fraudulently achieve a pass
mark for this work (see Statute on Studies Act Provisions / Examination Regulations of the UAS
Technikum Wien as amended).

I further declare that up to this date I have not published the work to hand nor have I presented
it to another examination board in the same or similar form. I affirm that the version submitted
matches the version in the upload tool.“

Wien, April 28, 2020 Signature

Kurzfassung

Eine der größten Schwächen der Cybersicherheit liegt in der “menschlichen Infrastruktur”
(Hadnagy, 2011, 3). Während dies in der Regel zu Security Awareness Trainings der Mitarbeit-
erInnen führt und andere organisatorische Fragen aufwirft, wird das Bewusstsein über sicheren
Code unter den EntwicklerInnen zu oft vernachlässigt. Ein wichtiger Hebel zur Verbesserung
der Informationssicherheit ist die Verbesserung der Qualität des Codes in Bezug auf sichere
Programmierung.

Ausgehend von dieser Situation untersucht meine Masterarbeit die Machbarkeit der Verwen-
dung von Freien und Open-Source-Software (F/LOSS) Tools, um eine Toolchain und Plattform
zur Generierung von Feedback aufzubauen, die für einführende Programmierkurse verwen-
det werden könnte, um Anreize für die Sensibilisierung und Praktizierung sicheren Program-
mierens zu schaffen. Eine Auswertung von 7 von 19 gefundenen statischen F/LOSS Analy-
sewerkzeugen für PHP-Code, zeigt, dass nur 2 zum Teil für eine Analyse hinsichtlich Sicher-
heitsschwachstellen im Code geeignet sind. Mehrere dieser Tools bieten jedoch Möglichkeiten
zur Erweiterung und Adoption. Die Verwendung von 2 ausgewählten Werkzeugen im SCRAP-
Prototyp, bietet einen Ausgangspunkt für weitere potentielle Forschung.

Der SCRAP-Prototyp, der im Zuge dieser Arbeit entwickelt wurde, besteht aus einer
OpenAPI 3 konformen API, einer entsprechende Prototyp-Implementierung eines RESTful
Web Services und einem prototypischen Web UI, die auf der Projekt-Website https://scrap.
tantemalkah.at dokumentiert, und unter einer AGPLv3-Lizenz zugänglich sind. Die Implemen-
tierung ist einfach mit zusätzlichen Scannern erweiterbar und kann für weitere Forschung im
Bereich der software security education.

Während die umfangreiche Literaturanalyse zeigt, dass der Bereich der software security
education noch viel mehr Aufmerksamkeit braucht, fügt SCRAP hier einen neuen Ansatz
hinzu. Seine Umsetzung erfordert jedoch einen nachhaltigen, langfristigen Ansatz und sozio-
technische Adaptionen in Organisationen, die diesen Ansatz erfolgreich umsetzen wollen,
sowie mehr offene und kooperative Forschung im Bereich der software security education, um
Verbesserungen bei der sicheren Programmierung im gesamten Bildungssektor und im Weit-
eren in der IT-Branche im Allgemeinen zu erzielen.

Schlagworte: software security education, secure code, static code analysis, F/LOSS
toolchain

https://scrap.tantemalkah.at
https://scrap.tantemalkah.at

Abstract

One of the biggest weaknesses in cybersecurity lies within the “human infrastructure” (Hadnagy,
2011, 3). While this usually leads to security awareness trainings of employees and other
organisational issues, the awareness for secure code among developers is too often neglected.
A major lever to improve information security is to improve the quality of code in terms of secure
coding.

Based on this situation, my thesis investigates the feasibility of using Free/Libre and Open
Source Software (F/LOSS) tools, to build a toolchain and feedback generation platform, that
could be used in introductory programming courses to add incentives for secure coding aware-
ness and adoption. An evaluation of 7 out of 19 found F/LOSS static analysis tools for PHP
code analysis, shows that only 2 are in part fit for secure coding specific analysis. However,
several of those tools provide opportunities for extension and adaptation. The use of 2 selected
tools in the SCRAP prototype provides a starting point for further potential research.

The SCRAP prototype, that was built in the course of this thesis, consists of an OpenAPI 3
conforming API, a corresponding prototype implementation of a RESTful web service and a
prototype web UI, which are documented on the project website https://scrap.tantemalkah.at,
and are accessible under an AGPLv3 license. It is easily extendible with additional scanners
and can be used for further research into software security education.

While the extensive literature review reveals that the field of software security education still
needs a lot more attention, SCRAP adds a new approach. Yet its adoption necessitates a
sustainable long-term approach and socio-technical adaptations in organisations who want to
facilitate it, as well as more open and cooperative research in software security education is
needed to improve secure coding capabilities throughout the educational sector and in term the
IT industry in general.

Keywords: software security education, secure code, static code analysis, F/LOSS toolchain

https://scrap.tantemalkah.at

Contents

1 Intro 1

2 Current State 4
2.1 Secure Coding . 4

2.1.1 Vulnerabilities & State of Software Security 11
2.2 Platforms and Tools . 15

2.2.1 PHP static code analysis . 19
2.3 Software Security Education . 21
2.4 Related Work . 36

3 Research Question 38

4 Methods 39
4.1 Literature review . 39

4.1.1 Process and initial findings . 39
4.1.2 Core and extended literature . 45

4.2 Prototyping RESTful Webservices . 49

5 Prototype 50
5.1 Design . 50
5.2 Implementation . 51

5.2.1 REST API . 51
5.2.2 API server . 54
5.2.3 Scanner integration . 56
5.2.4 Web UI . 65

5.3 Evaluation . 66
5.3.1 Vulnerability test data . 66
5.3.2 Static analysers . 67
5.3.3 SCRAP . 88

6 Future research 103

7 Conclusion 103

Bibliography 106

List of Figures 116

List of Tables 118

List of Code 119

List of Abbreviations 121

8 Appendix A: Helper scripts 123

9 Appendix B: SCRAP API definition 129

1 Intro

One of the biggest weaknesses in cybersecurity landscapes lies in the “human infrastructure”
(Hadnagy, 2011, 3). No matter how complex and thorough an organisation deploys technical
safeguards against cyber attacks, if they do not mitigate social engineering attacks, chances are
high that targeted attacks will succeed (Hadnagy, 2011, 1-21). Security awareness is therefore
one of the keys to secure information systems (Helisch & Pokoyski, 2009).

Besides the usually broader organisational issue of security awareness, there is another
crucial issue entangling cybersecurity and awareness: the awareness among software devel-
opers about code vulnerabilities and how code can be written in a secure way. According to
a late 2018 article by Code Dx, referencing the F5 Labs Application Protection Report 2018
(Pompon, 2018), “[w]eb application attacks are on the rise [and] were the primary cause of
reported breaches in 2017 and Q1 2018” (Code Dx, 2018). They also highlight that a “[l]ack of
attention to security is also an issue” resulting in a situation that “96 percent of all web applica-
tions contain some type of vulnerability that could be used to harm users.” For these numbers
they reference the Web Application Vulnerabilities Statistics report for 2017 by Positive Tech-
nologies (Positive Technologies, 2018). This highlights the necessity for developers to be aware
about vulnerabilities in web applications and secure coding in general. In a more recent Positive
Technologies report exposes two most alarming core findings:

• “In 19 percent of tested web applications, vulnerabilities allow an attacker to take control
of the application and server OS” (Positive Technologies, 2019b)

• “On average, each web application contained 33 vulnerabilities, of which 6 were of high
severity” (ibid)

Another recent Positive Technology report containing statistics on pentesting corporate infor-
mation systems found that “[v]ulnerabilities in web application code are the main problem on
the network perimeter. 75 percent of penetration vectors are caused by poor protection of web
resources.” (Positive Technologies, 2019a)

When we look beyond web application security, to the general software landscape, the recent
volume 9 of the Veracode report on the State of Software Security highlights that “[m]ore than
85% of all applications have at least one vulnerability in them; more than 13% have at least one
critical severity flaw.” (Veracode, 2018).

In light of this background it seems quite clear that, besides increasing security awareness on
all organisational and societal levels, a major lever to improve information security is to improve

1

the quality of code in terms of security. As several actors in the secure coding research field ar-
gue (Teto et al., 2017) (Jøsang et al., 2015) (Raina et al., 2015) (van Niekerk & Futcher, 2015),
an important and still under-represented step in doing so is to integrate secure coding into pro-
gramming education. While we already see major frameworks that include security issues into
the whole software development life cycle, there is still too little time and space set aside for
secure code in technical college and university introductory programming courses.

These introductory programming courses are usually crammed with all the things students
should know to be able to solve any given standard exercise. And all of this is often put into one
or two 5 to 10 ECTS credit courses. As an example, we can take a look at two local universities
in Vienna, both with technology focus, including programmes and courses on IT security.

At the FH Technikum Wien there is a bachelor degree in computer science, which includes
a 4.5 ECTS introductory course on programming in the first semester, as well as a 3.0 ECTS
course on web technologies. Both two courses have a mandatory follow-up course with the
same ECTS amount in the second term (FH Technikum Wien, 2019).

At the TU Wien there are several different computer science bachelor programmes, with the
BSc Media Informatics and Visual Computing and the BSc Software and Information Engineer-
ing being the closest fit for web application developers and developers coding in PHP, which
is still by far the most used server side programming language in web applications, with a
market share of over 78% (W3Techs, 2020). Both programmes include two consecutive intro-
ductory programming courses with 5.5 and 4.0 ECTS respectively in the first and second term,
as well as an optional 6.0 ECTS module on development of web applications (with 3 ECTS
on semi-structured data and 3 ECTS on web engineering). The software information and engi-
neering programme further includes a mandatory 6.0 ECTS course on programming paradigms
(Technische Universität Wien, 2019a) (Technische Universität Wien, 2019b). Both also include
an optional 6.0 ECTS module consisting of several 3.0 ECTS courses to choose from, none of
which has a specific focus on secure coding 1.

We can assume, that these two cases are not an exception in the global computer science
education landscape. The following literature review corroborates this assumption.

To get back to the point: in a relatively short time programming students are supposed to
learn to implement a broad range of functional requirements. Usually the set of requirements
to be implemented does not contain security requirements. This is not different from general
software engineering contexts. As Conklin et al. put it:

“Security has been described as a nonfunctional requirement. This places it into a
category of secondary importance for many developers. Their view is that if time-
lines, schedules, and budgets are all in the green, then maybe there will be time to

1One of these courses, Security for Systems Engineering contains the topics Security in Software Development
and Web Application Security, but these are 2 of the 11 main course topics, ranging very broadly from Cryptog-
raphy and Network Security to Organizational Security and Risk Management

2

devote to security programming.” (Conklin et al., 2016, Ch. 18, Para. 2)

Based on this situation, my thesis investigates the current state of software security edu-
cation and the feasibility of using Free/Libre and Open Source Software (F/LOSS) tools, to
build a toolchain and feedback generation platform, that could be used in introductory program-
ming courses to add opportunities for secure code awareness, without overloading the existing
coursework.

Chapter 2 highlights the results of my literature review in four parts: section 2.1 provides an
overview of current standards of code security and my analytical frame to focus on code and its
potential vulnerabilities. Section 2.2 highlights some current platforms and tools that are avail-
able for static code analysis. Section 2.3 provides insights into the field of software security ed-
ucation and efforts to include secure coding and security awareness into college and university
programming courses. In section 2.4 I point towards other research that aims to include some
form of educational code analysis tools or toolchains into programming education. Following
the analysis of the current state of the field, I formulate my research question in chapter 3. In
the methods chapter (4), I provide detailed insights into how I conducted the literature review
(4.1), in order to identify the huge gaps, which we still have to fill in software security education
and also the educational technologies available to improve the secure coding awareness and
skills of developers. I also provide some methodical insight into my prototyping approach (4.2).
Chapter 5 focuses on the prototype that was developed in this project, and provides details
about the design, requirements and architecture (5.1), the overall implementation (5.2), and its
evaluation (5.3). In the penultimate chapter (6) I point out further directions that could be taken
in follow-up research. The concluding chapter 7 summarizes the results and points towards
the applicability of F/LOSS tools to be integrated into higher education programming courses in
order to improve code security.

3

2 Current State

2.1 Secure Coding

The human factor is probably the biggest issue in cyber security (Hadnagy, 2011) (Helisch &
Pokoyski, 2009). Although this usually refers to the users of information systems, when it comes
to their implementation most vulnerabilities can be traced back to bad programming (Stallings
& Brown, 2018) (OWASP, 2019b) (MITRE & SANS, 2011). This chapter points out the general
importance of writing secure code as well as reference frameworks and perspectives on how to
tackle secure code and code vulnerabilities from an analytical point.

In Principles of Computer Security, the official CompTIA guide, three major considerations
are mentioned for securing a digital information system:

• Correctness

• Isolation

• Obfuscation

While for the latter two the authors primarily focus on network design and cryptography, for
the issue of correctness they state:

“Correctness begins with a secure development lifecycle (covered in Chapter 18),
continues through patching and hardening (Chapters 14 and 21), and culminates
in operations (Chapters 3, 4, 19, and 20).” (Conklin et al., 2016, Ch. 1, Section:
Approaches to Computer Security)

So even in this standard reference guide on computer security, the topic of secure code
is reduced to a one chapter item in the whole security framework. That also has to do with
what cyber security frameworks mostly are here for: to help organisations, which mostly use
information & and communication technologies (ICTs) and not so much develop them on their
own, to strengthen the secure facilitation of these ICTs on all levels - hence the chapters on
patching and hardening and all the guidelines on how to operate ICT securely.

Similarly international standards on information security management like ISO 27001 are
used for the certification of organisations operating with high levels of information security (ISO,
2013). They can and are of course also be used for organisations developing code. But from
their design they are aimed to be implemented for a most diverse set of organisations, which

4

means it is primarily aimed towards organisations that have to depend on using code by others
rather than developing their own code.

But while such information and computer security reference books like Principles of Com-
puter Security (PoCS) do not focus primarily on secure code, we can nevertheless find some
important aspects either relating or directly pertaining to secure coding. Chapter 2 of PoCS, for
example, introduces three main security tenets (Conklin et al., 2016, Ch. 2, Section: Security
Tenets) and refers to the OWASP Session Management Cheat Sheet (OWASP, 2019c), which
guides developers on how to securely implement session management in their applications. It
also is a concrete but language-agnostic guide on what to consider when implementing session
management.

The other mentioned tenets besides “Session Management” are “Exception Management”
and “Configuration Management”. While exception handling in a software is part of exception
management, the focus here lies on the general working of the whole information system and
its security processes. Configuration management is mostly out of scope of secure coding.

The chapter focusing on the secure development life cycle (Conklin et al., 2016, Ch. 18,
Section: Secure Coding Concepts) lists 4 concepts applied for secure coding:

• Error and Exception Handling

• Input and Output Validation

• Fuzzing

• Bug Tracking

While fuzzing and bug tracking are important in testing and managing the software develop-
ment, for our purposes we have to consider error/exception handling and I/O validation as a
main focus. Besides these concepts for secure coding they also list concrete types of attacks,
which secure code should mitigate (Conklin et al., 2016, Ch. 18, Section: Application Attacks):

• Cross-Site Scripting

• Injections (specifically with SQL, LDAP and XML)

• Directory Traversal/Command Injection

• Buffer Overflow

• Integer Overflow

• Cross-Site Request Forgery

• Attachments

• Locally Shared Objects

• Client-Side Attacks

5

• Arbitrary/Remote Code Execution

Preceding the chapter on secure software development, they provide a whole chapter on web
components. There we find general background information on security concerns regarding
the different technologies and protocol layers surrounding web usage. When it comes to code
security for web applications they refer to the chapter on secure software development and the
list of attack patterns above.

Another, widely renowned reference work on computer security, is Computer Security: Prin-
ciples and Practice by William Stallings and Lawrie Brown (Stallings & Brown, 2018). While
several aspects of secure coding are folded into chapters dealing with conceptual issues not
directly reduced to code, but for example database security, containing subsections on SQL
injections (Stallings & Brown, 2015, 117-183), it also has a whole chapter on buffer overflows
(Stallings & Brown, 2015, 341-378) and on software security (Stallings & Brown, 2015, 379-
418), containing technical summaries and analysis of code vulnerabilities.

With reference to the OWASP Top 10 (OWASP, 2019b) and the CWE/SANS Top 25 Most
Dangerous Software Errors list (MITRE & SANS, 2011), Stallings and Brown emphasize the
need for defensive programming skills and efforts to bring this knowledge to developers:
“Awareness of these issues is a critical initial step in writing more secure program code.”
(Stallings & Brown, 2018, 381).

As core definition of what secure coding means they provide the following:

“Defensive or Secure Programming is the process of designing and implementing
software so it continues to function even when under attack. Software written using
this process is able to detect erroneous conditions resulting from some attack, and
to either continue executing safely, or to fail gracefully. The key rule in defensive
programming is to never assume anything, but to check all assumptions and to
handle any possible error states.” (Stallings & Brown, 2018, 382)

Analytically they categorize issues of secure coding into four sections:

• handling input

• writing safe code

• interaction with other programs and the OS

• handling output

When it comes to input handling, Stallings and Brown start with the issue of input size and
buffer overflows, which has its own dedicated chapter in the book. And they importantly highlight
that not only direct user input is relevant, but also input by the operating system environment
and other programs and routines. While they stress the importance of buffer overflows when it
comes to languages like C and C++, little is said about buffer overflows in high level languages

6

like PHP or Python, which are widely used for web application programming (Stallings & Brown,
2018, 384-385). This could be a general blind spot, as most literature and web search results
on buffer overflows have to do with C/C++. Even the OWASP page on Buffer Overflow currently
suggests it might only be an issue related to “C, C++, Fortran, Assembly” (OWASP, 2019a) 1.

But while PHP itself is not vulnerable to buffer overflow in the sense that a programmer
could allocate a too small buffer and then write too large amounts of input data to it, PHP
still uses the underlying OS, usually a web server like Apache, and many other libraries which
are often written in C. As just one example we could look at the PHP 5 changelog for version
5.6.40 from 10 Jan 2019. There we find fixes for several buffer overflows in 4 widely used
libraries: GD, Mbstring, Phar, and Xmlrpc (php.net, 2019a, Section: Version 5.6.40, 10 Jan
2019). In the PHP 7 Changelog we even find a very recent buffer overflow vulnerability in the
core (php.net, 2019b, Section: Version 7.3.9, 29 Aug 2019). Or another one from 2019 in a core
function: “Buffer Overflow via overly long Error Messages” (php.net, 2019b, Section: Version
7.3.3, 07 Mar 2019). So it is important that also web developers using PHP are aware of buffer
overflow issues and that we should create awareness against a false sense of security in this
regard.

What Stallings and Brown write for buffer overflows, is also valid for the other issues regard-
ing input handling: “Writing code that is safe against buffer overflows requires a mindset that
regards any input as dangerous and processes it in a manner that does not expose the pro-
gram to danger” (Stallings & Brown, 2018, 385). They emphasise the importance of correct
interpretation of programme inputs, syntactically as well as semantically. They highlight this on
the example of injection attacks, including command injection, SQL injection as well as code
injection. They also feature cross site scripting (XSS) attacks as a major problem in the area of
input handling.

For the category of writing safe program code, they start with the issue of correct algorithm
implementation (Stallings & Brown, 2018, 396-398). This is a problem which is harder to eval-
uate automatically, as the evaluation of correct algorithm implementation most often cannot be
specification-agnostic. In the case of the SCRAP prototype, that is developed in course of this
thesis, this would mean, that the toolchain would have to know up-front, in some formalized
way, what the exercise requirement is, in order to evaluate if the algorithms have been imple-
mented correctly. Fortunately most issues of correct algorithm implementation will be evaluated
by existing exercise submission tools, so this is not in the scope of SCRAP. Nevertheless, this
could be developed as a potential extension to SCRAP, for cases where (secure) algorithm
implementation is the main focus of an exercise. 2

1This is valid for the state of the page on 2019-09-16. The disclaimer of the page says: “This Page has been
flagged for review. Please help OWASP and review this Page to FixME. Comment: No real edits since 2009”

2Also not in the scope of SCRAP, but noteworthy, as it is an issue “that is largely ignored by most programmers”
(Stallings & Brown, 2018, 398), is to ensure that the running machine code correctly corresponds to the algo-
rithmic implementation. This has to do with compiler security and integrity and should also be consideration in
information security management implementations, especially in organisations which write and/or compile code
themselves. Also in the area of web application security, developers should at least be aware that in the end

7

Other issues of writing secure program code, mentioned by Stallings and Brown are the
correct interpretation of data values, the correct use of memory, and preventing race conditions
with shared memory (Stallings & Brown, 2018, 398-400). These can be tested with static code
analysis to some extent.

When it comes to interaction with the OS and other programs and libraries, they list the
following key issues (Stallings & Brown, 2018, 400-412):

• Environment variables

• Using appropriate, least privileges

• System calls and standard library functions

• Preventing race conditions with shared system resources

• Safe temporary file use

• Interacting with other programs

All of these issues can be addressed from an operations point of perspective as well as from
a secure code perspective. In any case developers should be aware, that operators might not
handle configuration and execution of their programs in the way they expect them too and that
they should - wherever possible - prevent misuse through writing their code accordingly.

For the final category of handling output data, they stress the importance of sanitising the
output. They especially highlight XSS as a prominent example where malicious output data can
cause substantial harm. The general point to make here is, that one can never fully assume
how and what the output data will be used for and therefore always should adhere to a system’s
specification.

With these examples Stallings and Brown provide a compact guide on what issues to con-
sider for secure coding. Yet, this is a standard reference book introducing students to computer
security. When we are looking for a standard reference work that focuses entirely on secure
code and provides a systematic analysis of how code can be vulnerable and how to secure it,
we have to go back to the early 2000s.

In Writing Secure Code, Michael Howard and David LeBlanc lay out all the potential secu-
rity issues code could have. While all the categories of vulnerabilities listed above - in their
terms from the “Public Enemy #1: The Buffer Overrun” to “Internationalization Issues” - are
explained in detail, they also include special chapters on issues like socket security and how to
implement secure remote procedure calls, how to facilitate the Distributed Component Object
Model (DCOM) in a safe way as well as how to protect against DDoS attacks (Howard & Le

they often put unquestioned trust in the web server and its execution environment. But for the case of students
learning to write secure web application code in introductory programming courses, we should probably assume
a safe execution environment.

8

Blanc, 2003). While they write from a Microsoft perspective in the early 2000s, and therefore
such things as DCOM get extra attention, after conducting my full literature review, this books
still seems to be one of the most comprehensive reference books on writing secure code. Of
course most of the mentioned tools are now deprecated, but from an analytical perspective it
provides a systematic and complete overview on code vulnerabilities and also includes system-
atic guidance for security testing.

They also include some guidance on threat modelling and present their STRIDE and DREAD
models for categorising threats and calculating risks, by decomposing an application and inves-
tigating all its subsystems/components. STRIDE is comprised of the following threat categories
(Howard & Le Blanc, 2003, pp 83):

• Spoofing identity

• Tampering with data

• Repudiation

• Information disclosure

• Denial of service

• Elevation of privilege

To evaluate the risk of code vulnerabilities the DREAD model is comprised of 5 factors
(Howard & Le Blanc, 2003, pp 93):

• Damage potential

• Reproducibility

• Exploitability

• Affected users

• Discoverability

While DREAD is not used by Micrsoft anymore since 2008, there are more modern risk as-
sessment frameworks we could use, like the CVSS or similar scoring systems (FIRST, 2019).
Yet STRIDE could be used as a model to explain found code vulnerabilities in a bigger applica-
tion context.

In their chapter on security testing they transform the STRIDE model to a set of testing tech-
niques and strategies. Beside these, they emphasise the need to “exercise the interfaces by
using data mutation” (Howard & Le Blanc, 2003, ch. 19, sec: Building Security Test Plans,
subsec: Attacking with Data Mutation). This is done by “perturbing the environment such that
the code handling the data that enters an interface behaves in an insecure manner” (ibid).
According to their generic test scheme program input data can be tested based on (ibid):

9

• size, which could be:

– too long

– too short

– of zero length

• content, which might be:

– random data

– null

– zero

– of the wrong type

– of the wrong sign

– out of bounds

– a mix of valid and invalid data

– on-the-wire data, which might be:

∗ replayed

∗ out-of-sync

∗ high volume

– made up fully or partially of special characters, which could be:

∗ meta characters

∗ script tags and characters

∗ escaped characters and code sequences

∗ HTML and script code

∗ slashes

∗ quotes

• the container (e.g. file metadata), which might:

– be a link and not a regular file

– not exist

– exist

– be restricted in access

– be not accessible at all

– have an unexpected name, to wich all the data testing techniques as listed above
apply (content and size)

10

With this rather complete data testing technique and the categories of vulnerabilities listed
above, we have a sufficient reference model for testing code for weak security or outright vul-
nerabilities. Additionally, the next subsection provides an overview of current frameworks and
reports on software security and vulnerabilities as they are found in practice.

2.1.1 Vulnerabilities & State of Software Security

Two of the most established and well-known frameworks to categorise existing software vulner-
abilities are the regularly updated Top 10 list by the Open Web Applications Security Project
(OWASP) (OWASP, 2019b) and the CWE/SANS Top 25 Most Dangerous Software Errors list
(MITRE & SANS, 2011), both also mentioned as main references in (Conklin et al., 2016, Ch.
18, Subsection: Coding Phase).

While the OWASP Top Ten list was published since 2004 in a new version every 3 to 4 years
(2004, 2007, 2010, 2013, 2017), the CWE/SANS Top 25 came out in 2009, 2010 and in the
last version in 2011. Only in 2019 a new and overhauled version was published as the CWE
Top 25. The old CWE/SANS versions used “surveys and personal interviews with developers,
top security analysts, researchers, and vendors. These responses were normalized based on
the prevalence and ranked by the CWSS methodology.” (MITRE, 2019). The new 2019 version
took a different, more data driven approach “based on real-world vulnerabilities found in the
NVD” (ibid).

The OWASP Top 10 on the other hand is data driven in the way, that real application vul-
nerabilities are counted, assisted by proper tooling, but the data gathering is based on a more
qualitative approach, including an industry ranked survey of vulnerability categories and a public
data call to submit vulnerability data (OWASP, 2017, 24).

A main difference between the OWASP Top 10 and the CWE(/SANS) Top 25 is the former’s
focus on web application and risk assessment while the latter uses the full range of applica-
tion domains and focuses on weaknesses. This is also highlighted in the 2011 version of the
CWE/SANS Top 25, which includes an appendix on mapping to the 2010 version of the OWASP
Top 10, stating that “[i]n general, the CWE/SANS 2010 Top 25 covers more weaknesses, in-
cluding those that rarely appear in web applications, such as buffer overflows.” (MITRE &
SANS, 2011).

The most recent OWASP Top 10 list from 2017 includes the following vulnerability classes
listed in table 1 (OWASP, 2017).

While XSS vulnerabilities still ranked 3rd in the 2013 Top 10 and went down to 7th position
in the recent report, Cross-Site Request Forgery (CSRF) was on position 8 in 2013 and did
not make the top ten in the 2017 report. This is because “many frameworks include CSRF
defenses, [so] it was found in only 5% of applications” (OWASP, 2017, 4). As introductory
programming courses might not facilitate full-fledged web application development frameworks
but encourage students to come up with their own solutions and to understand the more basic
operations behind complex frameworks we still should not dismiss CSRF as mostly irrelevant.

11

Table 1: Vulnerability Categories of the 2017 OWASP Top 10.

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with Known Vulnerabilities

10. Insufficient Logging & Monitoring

Similarly, the downfall of XSS is partly due to better detection and tooling, but XSS nevertheless
is “the second most prevalent issue in the OWASP Top 10, and is found in around two-thirds of
all applications” (OWASP, 2017, 13).

Also in the CWE Top 25 we still find XSS and CSRF quite prominently beyond the first ten,
with XSS even ranking as the second most dangerous vulnerability, as displayed in table 2

(MITRE, 2019).
The report even lists 15 more categories as “Weaknesses On The Cusp” with some of them

not completely out of scope for web applications, like “Incorrect Type Conversion or Cast” or “Al-
location of Resources Without Limits or Throttling”. But as already the 2011 report emphasized
in its comparison to the OWASP Top 10, not all of these categories apply to web applications.
Also several of them are more relevant for the configuration and operation of (web) applica-
tions, so they are not immediately relevant for learning secure web application development.
Of course developers should be aware of those issues. But for the sake of an introductory
programming course, these issues might result in information overload.

Similarly, the recent Veracode State of Software Security report Vol. 9 lists 20 most common
vulnerability categories (Veracode, 2018, 25). Most of the listed categories can also be found
in (or as a subset of) those in the OWASP Top 10 and the CWE Top 25. Nevertheless, it makes
some of them more explicit, like “CRLF Injection”, “Error Handling”, “Time and State”, and for
modern web applications especially relevant: “API Abuse”.

A particularly interesting study in our context is presented by Felix Schuckert, Basel Katt and
Hanno Langweg by analysing a broad range of open source codes for code patterns that feature
SQL injection vulnerabilities (Schuckert et al., 2017). They use cvedetails.com as a source for
vulnerability data. This database was crawled for all CVEs from 2010 to 2016 and checked for
GitHub commit links. With the latter the crawler checked for the programming language in use.
A general comparison of vulnerability categories and languages found that projects based on

12

https://www.cvedetails.com/

Table 2: 2019 CWE Top 25 Most Dangerous Software Errors.

Rank Name Score

1. Improper Restriction of Operations within the Bounds of a Memory Buffer 75.56

2. Improper Neutralization of Input During Web Page Generation (’Cross-site
Scripting’)

45.69

3. Improper Input Validation 43.61

4. Information Exposure 32.12

5. Out-of-bounds Read 26.53

6. Improper Neutralization of Special Elements used in an SQL Command
(’SQL Injection’)

24.54

7. Use After Free 17.94

8. Integer Overflow or Wraparound 17.35

9. Cross-Site Request Forgery (CSRF) 15.54

10. Improper Limitation of a Pathname to a Restricted Directory (’Path Traver-
sal’)

14.10

11. Improper Neutralization of Special Elements used in an OS Command
(’OS Command Injection’)

11.47

12. Out-of-bounds Write 11.08

13. Improper Authentication 10.78

14. NULL Pointer Dereference 9.74

15. Incorrect Permission Assignment for Critical Resource 6.33

16. Unrestricted Upload of File with Dangerous Type 5.50

17. Improper Restriction of XML External Entity Reference 5.48

18. Improper Control of Generation of Code (’Code Injection’) 5.36

19. Use of Hard-coded Credentials 5.12

20. Uncontrolled Resource Consumption 5.04

21. Missing Release of Resource after Effective Lifetime 5.04

22. Untrusted Search Path 4.40

23. Deserialization of Untrusted Data 4.30

24. Improper Privilege Management 4.23

25. Improper Certificate Validation 4.06

13

PHP code yield most results when it comes to SQL injections, compared e.g. to projects based
on C/C++ which, unsurprisingly, yield most results for buffer overflow vulnerabilities.

Therefore all vulnerable PHP code samples found on GitHub have been analysed in a man-
ual review process, supported by PhpStorm’s data flow analysis tool. Based on this, process
pattern categories for SQL injection vulnerabilities were produced. From this analysis a cate-
gorisation was created, which describes the found SQL injections by the following origins (ibid,
3-5):

• input sources

• string concatenations

• sinks for database queries

• fixes from the CVEs

• failed sanitisation attempts

Within their sample of 50 CVEs they categorised the sources into the following five functional
loci of those web applications:

• HTTP wrapper methods (20 occurrences)

• HTTP methods (16 occurrences)

• custom functions (9 occurrences)

• environment variables (1 occurrence)

• configurations (e.g. files) (1 occurrence)

The concatenations are divided into 44 occurrences of primitive concatenations that only use
the core language features and 12 uses of standard functions. The sinks consist mostly of “Self-
implemented database connection” (41 occurrences), and 5 unsafe uses of data-represented
objects (like DAO or ORM) as well as 3 unsafe uses of standard database drivers.

They also categorised the fixes to the found vulnerabilities into the following five approaches:

• standard methods for sanitisation (21 occurrences)

• use of fixed data types (14 occurrences)

• use of custom sanitisation methods (10 occurrences)

• checking for valid input (e.g. white-/blacklisting) (5 occurrences)

• use of parametrised SQL queries (4 occurrences)

14

In the area of failed sanitisation the majority was due to no use of any data sanitisation at
all (32 occurrences), while in 15 cases there was some sanitisation, but incomplete (e.g. not
for all parameters). Then they also found three cases, which they put into separate categories:
1) non-casted variable, where casting did happen, but the non-casted input was used for the
query, 2) unexpected control flow, where a check was made, but the consequence was just
to set a redirect header, without stopping the script execution, and 3) comparing different data
types, where a string was checked by comparing it to an integer but using the whole string in
the query, including potentially trailing injection code.

In the discussion of their project they highlight how pervasive SQL injections still are and how
much this looks like a basic educational problem:

“The results show different kinds of source code patterns that result in a SQL in-
jection vulnerability. The resulting categories allow to create different source code
permutations of SQL injections. Many source code parts from relating CVE reports
did not have any sanitization of the inputs. Many developers probably require a
better software security education to prevent such issues. For example, the source
code from CVE-2014-8351 looked like a classical teaching example of a SQL vul-
nerability. All relevant parts of the SQL injection (source, concatenation and sink)
were not even in ten lines of code. This shows that software security education is
indispensable.” (ibid, 5)

This features in a very vivid way, that our computer security educational systems have a long
way to go, when it comes to secure coding, and it is in line with research on software security
education, as presented in section 2.3. It also points to SQL injections as a prime target for
analysis, especially in introductory programming contexts, which is reflected in SCRAPs data
set for evaluation as presented in chapter 5. In general this study provides a good template
for categorising and finding SQL injections. It might make sense to have - in a similar way - a
full pattern landscape in relation to e.g. the OWASP Top 10. This then could be a basis for a
modular open framework for code analysis and feedback.

2.2 Platforms and Tools

This section reviews literature on platforms and tools for static code analysis and how it can
be applied (among others) in introductory programming contexts. The following subsection on
PHP static code analysis provides an overview of available F/LOSS static code analysers and
static application security testing (SAST) tools, which will be evaluated in more depth in the
prototype chapter (5).

Focusing on the client side of web applications Anis et al. developed and evaluated a method
to ensure the integrity of the JavaScript parts of a web application, that runs in the visitors

15

browser (Anis et al., 2018). Citing the OWASP Top 10 and the 2011 CWE/SANS Top 25 Most
Dangerous Software Errors reports, they argue that “the attackers focus has shifted from the
server-side to the client side” (ibid, 618). Therefore they wanted to “introduce an approach
to secure web applications by providing guidelines to the developers to prevent SQL injection,
XSS, and resource alteration attacks” (ibid). Their contribution was described as two-fold: First,
by developing security policies for web applications, they want to support proper implementation
of secure coding. Second, they develop an integrity verification module (IVM) that “prevents
code tampering at runtime” by protecting “JavaScript code on the client side [...] from alteration.”
(ibid, 619)

As their argument is, that increasing client-side security also helps to increase the overall
security of a web application, they focus on issues of SQL injections, XSS attacks and resource
alteration. While the former two can and should be mitigated by the backend components
altogether, additional mitigation on the client side decreases the overall attack surface of a web
application. In case of resource alteration, the focus is specifically on client-side issues. In this
case the question is how to prevent runtime alteration of the JavaScript-based client code and
also how to prevent injection of malicious code through compromised content delivery networks
(CDNs) or other third party resources.

To mitigate against these issues, they propose 5 security policies:

• input sanitisation

• output validation

• least-privilege

• sub-resource integrity

• content security

These policies should be considered by developers throughout the software development
life-cycle. But it also should be enforced by their IVM, which has to be integrated in the web
application’s code. “It is designed to secure the verification module and to maintain obfuscation
during runtime.” (ibid, 621)

The IVM design is based on including several web workers which operate independently from
the main UI thread of the web application client and in the background, doing all the hashing and
verification, only interacting punctually with the main app. This way a continuous verification of
code integrity can be performed without decreasing the responsiveness of the user interface.

For the evaluation of their IVM they used the following four tools: Vega for SQLi, header
injection and XSS, OWASP’s Zed Attack Proxy as an automated scanner and fuzzer as well as
for passive scanning and forced browsing, Skipfish for security threats and vulnerability reports,
and JBroFuzz for automated fuzzing.

They used the combination of these on 22 different web applications, each from a different
application area (e.g. blogging, booking system, chat, e-learning, data analysis, restaurant
management, Pokemon Go, etc.).

16

Comparing the prevention rate of all the web apps without the IVM to a version of them that
includes the IVM, they found that the IVM increases the attack prevention rate significantly (24%
for SQL injections, 31% for XSS attacks, and 43% for resource alteration attacks).

Through the use of more web workers in parallel, the optimum in their experiment being 16,
the time for integrity verification can be brought down to 0.04 seconds and attack reporting
happens between 2.5 and 4.5 seconds after an attack is initiated.

Overall this work seems quite promising, but is not in scope for SCRAP. Nevertheless it shows
that secure coding should also be fostered for frontend components, especially as this area is
often neglected in security considerations. Of course the backend components have to mitigate
against all those issues, but that does not mean that secure coding can be ignored as soon as
it comes to JavaScript-based client components.

A graph-based approach to static analysis is evaluated by Sahu and Tomar. They created a
“multi-relational graph-based interactive system” that could be used to do code inspection while
developing (Sahu & Tomar, 2017). In their work they list a lot of other work on code analysis and
vulnerability detection, not only focusing on PHP specifically. But the most notable mentions of
SAST tools are DevBug, RATS and RIPS, which they also use as a benchmark to compare
their own tool against.

To develop rules of secure coding standards that can be used in their automatic graph-based
analysis, they draw on the OWASP Development Guide and Howard and LeBlanc’s Writing
Secure Code 3 (ibid, 887).

In their rationale the majority of web applications are vulnerable either due to “improper han-
dling of language-specific functionalities” or “poor style of writing code”. With the latter they
mostly mean “code by the less experienced programmer[s]” who would be encouraged by “[f]ree
available templates, open-source web development platforms, minimal hosting cost and their
ad hoc nature” (ibid) to write more and more web applications with a primary interest “to build a
user-friendly interface rather than creating the secure system” (ibid, 888). 4

Sahu and Tomar identified the following four PHP features with potential threats (ibid):

• “Type safety/ type juggling”

• The php.ini file

• “Dynamic code inclusion”

3Analogous to my own assessment, they attest this reference to be an “excellent” one when it comes to secure
coding.

4 I would argue that poor style of writing code is not primarily the problem of inexperienced or beginning program-
mers, but an endemic problem of an industry focusing on quick releases and decreasing development costs. Of
course new programmers might find it even harder to address secure coding issues, use well-designed code
patterns, and come up with creative and nevertheless secure solutions for tricky problems. But as my own liter-
ature review on secure coding education suggests, this problem is pervasive throughout all educational stages
and industries.

17

• “Dynamic command execution”

While they describe their approach in a way that makes clear how they approach the problem
and what the principle for the design of their tool is, they are not at all stringent and conclusive
on how the tool works in detail and how it identifies vulnerabilities. Also the sample code and
GraphML snippets seem to not be syntactically correct, as if they made some copy-paste-
errors. This makes the approach unpracticable, if not unusable for integration into other work,
nevertheless it seems like a novel approach worth further investigation.

For the comparison of their tool to RATS, RIPS and DevBug on the basis of an unlabeled
data set they used the Damn Vulnerable Web Application (Dewhurst Security, 2020) and the
OWASP Mutillidae Project (OWASP, 2020c). But in describing their results they do not de-
scribe exactly how they extracted code snippets from their labeled data set (CVE, NVD, Syhunt
Vulnerable PHP Code, OWASP Filter Evasion Cheat Sheet) and how they actually compare it,
except than mentioning that for “cognitive performance analysis, remaining performance metric
of developed interactive system and three existing scanning techniques are computed from as-
sembled labeled dataset, and results are compared” (Sahu & Tomar, 2017, 892), without any
further reference on the applied methodology.

According to their analysis their tool performs quite well (ibid, 894). However, their results are
not reproducible based on their descriptions. Nevertheless the approach seems interesting.
Due to absent methodological explications and source code, this tool and approach cannot be
further used for SCRAP.

A particularly interesting platform for secure coding integration in software development is
presented by Heymann and Miller in a Tutorial at the 2018 IEEE Secure Development Confer-
ence. The tutorial targets “developers wishing to minimize the security flaws in the software that
they develop” and starts with “common vulnerabilities found in middleware and services [and
d]escriptions of each type of vulnerability” (Heymann & Miller, 2018, 124). The second part
focuses on automated assessment tools and how to work with them.

In their final section they present the Software Assurance Marketplace (SWAMP), which is
an initiative as well as a platform trying to increase secure coding practices by providing on-the-
go and integrable code analysis capabilities. They host https://www.mir-swamp.org, a free to
use analysis platform, and the SWAMP-in-a-Box, a stand-alone application to run on ones own
infrastructure.

SWAMP incorporates a variety of F/LOSS tools and also a few commercial tools to do code
analysis. While the majority of them focus on Java, C/C++ and .NET, Ruby and Python also
are well supported. Additionally under the rubric of Web Scripting they deploy several linters for
HTML, CSS, XML and Javascript, as well as static analysis tools for Javascript and PHP. For
the latter they use PHP_CodeSniffer and PHPMD (Morgridge Institute for Research, 2020).

18

https://www.mir-swamp.org

2.2.1 PHP static code analysis

To gain a sufficient overview of tools and platforms for static (security) analysis of PHP code, I
gathered several collections from web searches, the reviewed literature and through references,
as presented in table 3. The first column of the table includes a tag, which is used to refer to in
the table on specific tools and platforms 5.

Table 3: Reference lists for static code analysis tools.

Tag Description Reference Notes

AWESOME Awesome Static Analysis
repository

(Endler, 2020)

CERN CERN static code analy-
sis tools

(CERN Computer Security
Team, 2020)

refers to SWAMP

OWASP OWASP source code
analysis tools

(OWASP, 2020e) refers to AWE-
SOME as more
comprehensive

SAMATE NIST source code secu-
rity analyzers list

(National Institute of
Standards and Technol-
ogy, 2020)

refers to AWE-
SOME and
WPLIST

SWAMP Software Assurance Mar-
ketplace list of tools

(Morgridge Institute for Re-
search, 2020)

WPLIST Wikipedia list of tools for
static code analysis

(Wikipedia (EN), 2020)

In their entirety, those lists provide a vast and diverse overview on static source code analysis
tools and platforms, covering a lot of different languages. For the purpose of an evaluation for
potential use in SCRAP, I screened all lists for PHP related analysers with a F/LOSS license
and gathered information on its development status and whether it provides a documented API.
The result can be found in table 4, which also lists if those tools specifically aim at PHP code or
if they cover several languages. 6

While the focus was an F/LOSS tools, Coverity and RIPS have been included in this overview,
as RIPS is a direct successor of its 0.55 F/LOSS version and Coverity is included due to being
widely used for free in F/LOSS contexts through its GitHub integration and via Coverity Scan.
RIPS was originally specific to PHP and this focus lives on in the commercial version, although
the latter also supports analysing Java code.

5For the instantly curious readers, it also features as a direct link to the resource on the web.
6 The threshold for a yes in the column API is if there was a documented way to use the program not only as a

stand-alone application but (ideally) through a RESTful web interface. The threshold for a yes in the maintained
column is a release within the last 6 months (seen from Februar 2020). If the tool is not maintained according to
this criterium, the year of the last release is provided after the version number.

19

https://github.com/analysis-tools-dev/static-analysis
https://security.web.cern.ch/security/recommendations/en/code_tools.shtml
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://www.mir-swamp.org/#tools/public
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

Table 4: Overview of F/LOSS static PHP analysers.

Tool API PHP-
specific

Version main-
tained

F/LOSS

Coverity yes no - - no

graudit no no 2.3 yes yes

Parse no yes 0.8 (2018) no yes

phan no yes 2.5.0 yes yes

PMF (PHP Malware Finder) no yes 0.3.5 yes yes

phpcs-security-audit v2 no yes 2.0.1 yes yes

PHPSA no yes 0.6.2 (2016) no yes

PHPMD no yes 2.8.1 yes yes

PHPStan no yes 0.12.11 yes yes

PHP_CodeSniffer no yes 3.5.4 yes yes

php-sat no yes alpha (2006) no yes

Php Inspections (EA Extended) no yes 4.0.3 yes yes

Progpilot no yes 0.6.0 (2019) no yes

RATS no no 2.4 (2013) no yes

RIPS 0.5 no yes 0.55 (2015) no yes

RIPS yes yes - - no

SonarQube yes no 8.1 yes yes

WAP no yes 2.1 (2015) no yes

Yasca no no 2.2 (2010) no yes

20

graudit and PMF both are more of a kind of pseudo static analyser, as they only work with
pattern matching. But PMF is explicitly focusing on PHP malware and dodgy code, so it could
be useful, also due to its use of Yara rules. This tool was not found on any of the mentioned
lists but through an auxiliary web search when working through the lists and the different tools.

php-sat was a Google Summer of Code project, which was apparently never developed fur-
ther. But the description of its genesis is quite notable:

“The first source of inspiration came from my work as a assistant at the course
‘internet programmeren’ (Internet Programming) (2005,2006) at my University de-
partment. I noticed that a lot of students where not aware of the security problems
involved when programming PHP for the web.” (Bouwers, 2006)

Php Inspections (EA Extended) is a general analyser in form of an IDE plugin for PhpStor-
m/Idea. Therefore it is not tested in this study, but it could be used as a reference benchmark
in future and related research.

Among all other analysers that are still maintained, only SonarQube has a specific focus
on security. And it also is the only F/LOSS solution that provides an API exposed through
a web service. This makes it the primary candidate for further evaluation for the SCRAP
prototype. Nevertheless graudit, phan, PMF, PHPMD, and PHPStan are interesting candi-
dates for comparison regarding the hit rate and false positives for found code vulnerabilities.
PHP_CodeSniffer is also general analyser but with phpcs-security-audit v2 there is a security
specific rule set for it, which makes it additionally interesting.

The concrete comparison and analysis of these tools, tied to its potential integration in
SCRAP, is described in the prototype chapter 5. The full analysis and its accompanying data
can also be accessed in a separate git repository on GitLab and is linked to on the SCRAP
project page: https://scrap.tantemalkah.at.

2.3 Software Security Education

When it comes to fixing the problems of our insecure cyber landscapes, a lot of money, time
and energy is invested into building better tools and toolchains to counter attacks and improve
software development. But while it is important to fix vulnerabilities from an early start on and
to educate users and to set organizational measures, it might be as important and maybe even
more efficient to invest in developers’ education on secure coding. In this section I explore
current research on software security education, which suggest that an early investment to in-
tegrate secure coding principles and defensive programming into programmers education is
one of the major factors where we could improve cybersecurity substantially.

At the 2013 IEEE Global Engineering Education Conference and the 2013 3rd Interdis-
ciplinary Engineering Design Education Conference, Alexander Uskov reports on design,

21

https://scrap.tantemalkah.at

implementation and evaluation of the “state-of-the-art undergraduate and graduate curricu-
lum and courseware” in software and web application security (SWAS) at Bradley University
(Uskov, 2013b) (Uskov, 2013a).

Uskov describes the contents and evaluation results of a course called Software and Web Ap-
plication Security (SWAS), which they proposed and developed from 2009 to 2010 and taught
from 2010 to 2012, up to the evaluation 2013. The evaluation highlights common attack patterns
at the time and refers to the 2008 and 2013 ACM/IEEE Computer Science Curriculum: Infor-
mation Assurance and Security requirements. To meet the needs for increased skills in secure
coding, the “Department of Computer Science and Information Systems (CS&IS Department)
at Bradley University (Peoria, IL, U.S.A.) created undergraduate and graduate academic pro-
grams (concentrations) in software, Web, and computer network security” (Uskov, 2013b, 2).
One such course in these programs is the SWAS course, which is detailed and evaluated in the
paper by Uskov. In it they stress the need for practical hands-on teaching with an appropriately
developed course framework in order to “provide students with deep knowledge and excellent
technical hands-on skills for each type of computer attack discussed in a class, and b) prepare
students to deal with advanced computer attacks (i.e. Attacks 2.0) in real-world environment.”
(ibid, 3)

Uskov’s work shows that we have to integrate secure coding concerns early on in introduc-
tory programming courses - as highlighted below by other research. But it also shows that
additionally we need explicit courses on software and web application security. The question
for computer science departments then is, if these extended courses should be mandatory. The
secure coding research review by Uskov certainly mandates this, as security as add-on never
works in a satisfactory way.

While not directly on issues of secure coding, Juha Sorva describes struggles of students
in introductory programming courses (Sorva, 2013). Sorva provides a good overview and in-
sights which might be very much valuable for adopting secure coding practices in introductory
programming contexts as well. Therefore I want to describe Sorva’s research in a bit more
detail.

The article focuses on the use of notional machines in programming education. But it also in-
cludes an extensive literature review on introductory programming education, as it springs from
Sorva’s dissertation (Sorva, 2012). Both aspects are interesting for SCRAP and the context of
integrating secure coding into early stages of computer science curricula.

Notional machines are abstract models of computers that execute specific programming lan-
guage code. While a notional machine could be a quite generic abstraction of a common
personal computing system, usually notional machines merge abstractions of the computer
hardware, operating system and the specific programming language in use. Originally they
were introduced to computing education research in the 1980ies by Benedict du Boulay as
idealized computers “whose properties are implied by the constructs in the programming lan-
guage employed” (Boulay, 1986, cited by) (Sorva, 2013, 2). An example illustrating the abstract

22

and often language-specific character of notional machines is provided by Bruce-Lockhart and
Norvell with the code in listing 1 (Bruce-Lockhart & Norvell, 2007, cited by) (Sorva, 2013, 2):

1 int x=5;

2 int y = 12;

3 int z;

4 z = y/5 + 3.1;

Code 1: Example code segment by Bruce–Lockhart and Norvell to explain notional machines

While we find four instructions in terms of the programming language, the actual machine will
do a quite different number of instructions. And while the first three lines instruct the compiler,
the fourth line holds a lot more instructions for the actual computer (finally the CPU’s ALU),
as there are high-level concepts applied in this seemingly simple algebraic statement, such as
automatic type conversion and truncation.

In this way the model of a notional machine can be heavily influenced by the features of a
programming language and programming paradigms in a broader sense. Also different no-
tional machines can be created for a single programming language, providing low or high levels
of abstraction. In any way those notional machines are devices that can be used to facilitate
a students understanding of how programmes are executed. This is also important for secure
coding, as “[i]ncorrect and incomplete understandings of programming concepts result in unpro-
ductive programming behavior and dysfunctional programs”. (Sorva, 2013, 4) This combines
with an educational landscape in which “introductory programming courses are not particularly
successful in teaching students about fundamental concepts” (ibid). The literature reviewed by
Sorva “suggests that many of the problems of novice programmers are related to inadequate
understandings of the notional machine, and especially to the “hidden” processes that are not
directly apparent from program code” (ibid, 7)

The extensive literature review by Juha Sorva on notional machines and what mental model
theory, constructivism, phenomenography, and threshold concept theory as well as empirical
research in these fields suggest in regard to learning to programme, points towards a need to
rework introductory programming courses. This confirms my own experiences - the older ones
about being a participant in introductory programming courses and workshops as well as the
newer ones of teaching and facilitating introductory programming workshops. It also confirms
anecdotal evidence about experiences in learning to programme by friends, colleagues and
participants in introductory programming workshops.

One of the main problems seem to be limited resources, primarily of time. But Juha Sorva
suggests to address and use notional machines (more) explicitly and to focus on key concepts
and obstacles, because a time-wise investment in this area will improve learning and reduce
failure rates in attempts to create code that solves specific problems and to learn new coding
paradigms and patterns.

But we should not forget that time economies of teachers in introductory programming
courses might differ greatly from those of their students. In a vague sense the review sug-

23

gests that the use of notional machines will also reduce the time needed for teachers to explain
specific aspects and tune them to those aspects which yield most gain for students’ knowledge.
Nevertheless in order to achieve significant change in how notional machines are used in intro-
ductory programming at least in the beginning more time investment will be needed by teachers
and the institutions they are teaching in.

All of that points towards a similar problem we face with secure coding education. While
everyone accepts that it should be introduced early on, such as the concept of notional ma-
chines, little is done to change the structural context which is needed to do so. The structural
context in this case is the design of the computer science curricula, the amount of time given to
teachers and students to learn and the organisational policies and resources devoted to create
integrated and holistic learning approaches and spaces.

Notional machines improve the understanding of what specific programming instructions and
code patterns do in the final execution environment. They make a student’s understanding of
a specific programming language and paradigm more holistic. In the same sense they could
improve a student’s understanding of security concepts and awareness for and understanding
of vulnerabilities of specific instructions, functions and code patterns.

Out of Juha Sorva’s work arise several pedagogical suggestions, of which the following are
particularly interesting not only for introductory programming education as such, but also for
including secure coding skills and awareness:

• Use conceptual models and make them explicit : In every introductory course on pro-
gramming, there will be a notional machine anyway. It is “implicit in the programming
language used” (ibid, 20), and students will come up with some model themself, how-
ever appropriate. So using and making explicit a notional machine will mitigate a lot of
misunderstanding and hurdles in learning to code (securely). One way to do so is to
use conceptual models, which means that “instruction should start with the underlying
model [of a programming language] before proceeding to the abstractions founded on it”
in order to avoid the “ill-fated construction of intuitive knowledge about the computer and
programming language semantics” (ibid, 21).

• Inform students about threshold concepts: There are several concepts involved in learn-
ing to programme, which are hard to grasp at first encounter and which, to be fully un-
derstood, need a certain threshold of experience and tacit knowledge in how to deal
with uncertainty and the frustrations that sometimes arise from coding without having yet
grasped a threshold concept. Therefore “teachers should seek to inform students about
the existence of threshold concepts and liminality, increase students’ metacognition about
their liminal states” (ibid). In other words, students “should be helped to become aware
of the ways in which they presently think and practice, and motivated to transform those
ways” (ibid).

• Visualize: To explain the behaviour of a notional machine visually improves understanding
significantly. This might either be done by using drawings, flow charts, diagrams, etc.

24

on black/whiteboard and with presentation software, or it even might be accomplished by
using visual debuggers “a step-by-step trace of an input program as it is executed, making
explicit the flow of control, the values of variables, frames on the call stack, and so on”
(ibid, 22). There are even specific educational debuggers for that (Sorva et al., 2013).

• Foster active learning: While one can understand systems to a reasonable degree by
monitoring or observing them, advanced understanding and creative problem solving
skills arise from controlling or manipulating systems. The studies Sorva cites highlighted
something already in the 1980ies and 1990ies, for the particular case of monitoring/-
controlling complex systems, that seems quite similar to what Hooshangi et al found for
attack vs. defense code (Hooshangi et al., 2015). While the former demands the stu-
dent to understand how a system works to spot either malfunctions or vulnerabilities, the
latter demands the student to interact with the system in a way that increases the under-
standing of its complexity as well as the awareness for malfunctions or vulnerabilities. So
whenever (secure) coding is taught, there should be an emphasis on students hands-on
experiences.

These are all important points to be considered when implementing and integrating secure
coding courses and modules.

More specifically than focusing on programming education in general, software security edu-
cation was one of the main topics of the 9th World Conference on Information Security Educa-
tion (WISE9), which took place in Hamburg in 2015, in conjunction with the IFIP International
Information Security and Privacy Conference and was organized by the IFIP Working Group
11.8 – Information Security Education. The proceedings contain three papers whose main fo-
cus is the process of educating new programmers in university contexts (Bishop et al., 2015).

Aside from the concrete process of implementing some feature by programming code, secu-
rity can already be a topic before people start to code. This is highlighted by Johan van Niekerk
and Lynn Futcher, as they analyse software design patterns in terms of security considerations:

“Software design patterns are often used to address a commonly occurring problem
through a ‘generic’ approach towards this problem. The design pattern provides a
conceptual model of a best-practices solution, which in turn is used by developers to
create a concrete implementation for their specific problem.” (van Niekerk & Futcher,
2015, 75)

But while these patterns would be a perfect starting point to integrate security from the start
on, most design patterns found in use “do not include security principles as part of the generic
solution towards the commonly occurring problem.” (ibid, 75-76).

Therefore Niekerk and Futcher propose one example of an improved software design pattern
that includes security aspects. To demonstrate their approach they choose the Model-View-
Controller (MVC) pattern, by adding a verification and validation box between the view and the

25

controller, encoding and integrity filters between the view and the model, and timeouts, logging
and a AAA & trust a box between the controller and the model.

They also stress the point that security should never be added “as an afterthought” (ibid, 76),
but be integrated from the start and in all stages of software development. For this they also
refer to Writing Secure Code (Howard & Le Blanc, 2003), who argue that implementing security
as an add-on is usually much more expensive and even might break the original application
logic and user experience.

By using their improved and “security conscious” model of the MVC design pattern, the topic
of security will be integrated “during every discussion regarding an n-tier design” and by “in-
cluding security considerations as a default into every web application (or similar) development
project, students will get substantial exposure to the issues that should be considered” (van
Niekerk & Futcher, 2015, 81). From a teacher perspective the integration “of security principles
into existing design patterns can be a powerful tool [...] to improve the teaching of secure soft-
ware design” (ibid, 82).

While the issue of integrating security already at design-time has its own educational value,
as important is the issue of providing feedback to students throughout the whole process of
learning to programme. And this feedback should be designed in a way, that helps students to
adopt secure coding habits. This was the focus of Raina, Tayler and Kaza, who provided in-
sights into how they improved the materials for coding coursework within the CS0 level courses
at Towson University (Raina et al., 2015). They identified skimming and skipping of the mate-
rials by students as the core issues with the old 1.0 coursework modules. For their improved
2.0 modules they used segmentation to reduce skimming and skipping effects: “instead of pre-
senting large amounts of hypertext content at once, the content should be broken into smaller
chunks and presented one idea at a time on a single screen” (Raina et al., 2015, 66).

Another focus of their project was also to increase interactivity by using dialoguing and con-
trolling with immediate feedback to the learner. With reference to (van der Kleij et al., 2012) and
(Thalheimer, 2008) they classify feedback on the amount of detail it contains into three types
(Raina et al., 2015, 66):

• knowledge of results (KR): only the information if an answer is correct or not

• knowledge of correct response (KCR): as KR, but also includes correct answer

• elaborate feedback (EF): as KCR, but also includes explanation

Controlling means to allow the learner to set the pace of the learning and presentation pro-
cess.

Applied to SCRAP, the type of the feedback is already set to be immediate and allows for
controlling, as the feedback happens, when the student submits an example. Regarding the
detail, we should aim for an elaborate feedback, but be aware how to present it, in order to

26

avoid skimming or skipping. Therefore feedback should be summarized with further information
available by links to the platform.

In general the results of (Raina et al., 2015) - in line with the whole literature review - recom-
mend to not implement the secure coding part of programming education as an add-on but to
integrate it from the start. For their project they used Stanford University’s class2go web-based
application, which is a Django-based open source framework (Stanford Report, 2012).

This remark about the perils of security as an add-on is an important one, as the SCRAP
toolchain could also just be used merely as an add-on to existing coursework. Nevertheless the
prototype toolchain developed in this thesis can be used in secure coding integrated course-
work as a plug-in or add-in for existing exercise submission systems. It just has to be stressed
that most value will be added to existing coursework if it is reworked in terms of its didactic
design and methodology.

Another study by Raina et al. (2016) extends the study mentioned before (Raina et al., 2015)
by examining how student learning is improved and concept retention is increased through the
use of segmented and interactive learning modules (Raina et al., 2016).

Although I think the sample size in their study is rather small and therefore the results should
be treated tentatively, their study is in line with other research and points out that in terms of
learning retention there is no significant difference between more classical linear learning mate-
rials and their improved segmented and modularized materials. But in terms of the application
of learned knowledge, the improved materials achieved much higher score due to their higher
interactivity and sequences where students had to actively apply the knowledge before moving
on to succeeding sections.

While they did not research the effects of the modularization and segmentation on skimming
and skipping effects in this study, they plan on conducting further research to study these ef-
fects in comparison of their old an new modules.

A broader perspective on the state of software security education in the IT educational sys-
tem is provided by Jøsang, Ødegaard and Oftedal (Jøsang et al., 2015). Their argumentation
starts with the observation of a general industry consensus that security has to be integrated
into the software development life cycle. But while increasing efforts are put into technical and
organizational measures to increase cybersecurity little is done to increase the secure coding
awareness of developers who received technical college or university education in IT. To em-
phasise the importance on putting more efforts into integrating secure coding principles in IT
education, they use a probably bold but ravishing analogy:

“As an analogy, it would of course be irresponsible and even unthinkable to educate
building architects and civilly engineers without giving them adequate knowledge
about fire safety, otherwise the buildings in which we work and live would be full
of firetraps. Likewise it is irresponsible to offer IT programs at universities without
compulsory modules in information security. Unfortunately, still today many IT grad-

27

uates leave university and go into industry without any competence in information
security. Despite their great skills in programming and IT design, without skills in
security these IT graduates will necessarily build vulnerable IT solutions.” (ibid, 54)

To highlight the flaw in the IT educational system they compare different software develop-
ment models, with a focus on the waterfall model and the agile model as two ends on a spectrum
between large-scale/heavy-weight and flexible/light-weight models.

While security aware versions of these models are already established, all these models rely
on developers being aware and knowledgable about secure coding issues. As an example, the
Microsoft Security Development Lifecycle - representing a secure waterfall model - explicitly
puts training and the need for developers to be educated about secure code before the main
project start. Agile software development models on the other side just implicitly assume that
developers are educated in secure coding. (ibid, 61)

The task of secure software development frameworks is to reduce vulnerabilities. But while
it is “of course impossible to completely avoid generating security vulnerabilities during system
and software design [...], the state of cybersecurity can be significantly improved by reducing
both the number and the severity of security vulnerabilities generated.” (ibid, 56)

This is the main argument for demanding the integration of secure coding principles in all
programming education and training contexts, especially in technical colleges and universities.
Therefore they also conclude with a call to put more efforts into securing coding education: “If
a university offers an IT education program with insufficient security, then that university is part
of the problem of causing cybersecurity vulnerabilities. It is time for all IT education institutes to
become part of the solution.” (ibid, 62)

For maximal effectiveness of such an integration it should happen as early as possible in
every educational track on software engineering. As Chi et al. argue, “the earlier students learn
secure coding concepts, even at the same time as they first learn to write code, the better they
will continue using secure coding practices” (Chi et al., 2013). As they put it, we should even
broaden the issue to the whole field of STEM curricula, “not to make every STEM student a
security expert, but to make them aware of common vulnerabilities and ways to avoid them.”
They also stress that “[w]riting secure code is an essential part of secure software development”
and that “vulnerabilities discovered later in the development cycle are more expensive to fix than
those discovered early.” (ibid, 42)

A major problem in their view is that the student’s main goal in programming courses is to
quickly come up with code that works, while not paying too much attention to error handling,
failure modes and the validity of user inputs. In order to address this issue they built teaching
modules that are fit to be integrated into programming courses for STEM students. These
modules draw on static code analysis tools to evaluate students’ code, which they categorise
into the following four core techniques applied for the analysis (ibid 43):

• Pattern matching

28

• Semantic analysis

• Symbolic execution

• Abstract interpretation

This categorization also creates a spectrum of increasing sophistication of those tools and
techniques from quite simple pattern matching methods to advanced techniques of abstract
interpretation of code.

As their modules build on making the students use static analysis tools, they reinforce “the
concept of the vulnerability and practice skill at using the tool on a specific source code” (ibid,
44) When we take this into account for SCRAP, we have to avoid creating a situation where
students start to just rely on pushing their code to some destination and then receiving some
feedback if the code is fine or not. So the generated feedback should be transparent in a way
that it includes information on how the code was scanned and analysed, and how they could do
so on their own.

On top of 4 of their web based modules for STEM students to learn to apply static code
analysis and write secure code, Chi et al. conducted a survey with 70 STEM students as partic-
ipants, 40% studying computer and information science. Their main result shows that hands-on
experience significantly improves student awareness of and self-perceived familiarity with se-
cure coding (ibid, 45-47).

A different angle on learning to code securely is taken by Hooshangi Et Al in an analysis of
attack and defense code written by 75 students at New York University, as an assignment in
an Introduction to Security class. For their assignments, students were tasked with writing a
“defense monitor to stop a user from reading data, writing over existing data, or writing new data
to the end of a file if there was no permission to do so” (Hooshangi et al., 2015, 2). After they
completed this first assignment, they were tasked with writing attack programs (one or many) to
test and circumvent the defense monitors submitted by others in the first assignment. The class,
in which this assignments took place was a “senior/first-year graduate level class designed for
Computer Science BS / MS students and also for Cybersecurity MS students” (ibid, 3).

Their most important finding is that “students who learn to write good defensive programs
can write effective attack programs, but the converse is not true” and that “greater pedagogical
emphasis on defensive security may benefit students more than one that emphasizes offense.”
(ibid, 1). They analysed how unique students’ solutions were and if attack and defense abilities
correlated. Regarding the uniqueness they found that about 80% of the student submissions
are unique, which “shows that secure coding is a complex problem and different students find
different solutions.” (ibid, 4) That those students who wrote good defense programs also wrote
successful attack programs but not vice versa, they explain in the following way: “Having the
ability to defend entails being able to consider, and handle, possible attacks. However, attack
ability is not indicative of talent with defense.” (ibid, 5) While their “experiments do not prove
causation” (ibid, 6), their research ties in with those works that argue for including secure coding

29

early on in introductory programming courses, as understanding vulnerabilities increases the
complexities students can bring in to finding creative coding solutions.

This is also strengthened by Teto et al., who focus on I/O based vulnerabilities and argue
for the integration of Defensive Programming (DP) into programming and general computer
science education (Teto et al., 2017). They demonstrate the mitigation strategies of DP in the
case of Cross-Site-Scripting attacks, by employing rigid input validation, specifically by using fil-
tering, regular expression matching, whitelisting and blacklisting as validation tools. Regarding
output sanitisation they highlight escaping and encoding as topics that should be included into
a programmers mindset.

In their closing remarks they argue, that we have to “foster the Defensive Programming mind-
set in CS and related degree programs by both training future software developers in cyber-
security awareness and equipping them with fundamental tools to fight cybersecurity attacks”
(ibid, 8). As a pragmatic way to do so, they suggest to integrate the OWASP ASIDE/ESIDE
project into educational coding environments. While the ASIDE part is directed more towards
professional software development, the ESIDE branch “focuses on help educating students se-
cure programming knowledge and practices” (OWASP, 2016)

The mentioned ASIDE project was developed and evaluated for teaching secure coding
by Jun Zhu, Heather Richter Lipford and Bill Chu at the University of North Carolina (Zhu
et al., 2013). Their starting point was the realisation that “[d]espite the importance of secure
software development, there is little research in how to effectively incorporate the training into
existing degree programs and computing curricula.” (ibid, 687) While “security education re-
searchers are recognizing that security education must be threaded throughout the entire com-
puting curriculum” the main obstacle to accomplish this is, that “CS faculty have never been
trained in secure programming” and “existing courses may not have the time or resources to
cover additional secure programming topics on top of already extensive course content.” (ibid)

To tackle the problem Zhu et al developed a prototype for an Eclipse plug-in, called “Assured
Software IDE”, or in short ASIDE. The idea is that students will be coding for their programming
assignments with an IDE anyway, so they could use Eclipse and the ASIDE plug-in. While they
only work on their original assignment, they get additional on-the-fly feedback regarding secure
coding in relation to their own code.

In terms of their research ASIDE is a “proof-of-concept Eclipse plugin for Java”, which is
evaluated in context of an “advanced Web application development class”. It works as a long-
running background process, scanning all project code files for “patterns that match pre-defined
heuristic rules of security vulnerabilities”. When ASIDE finds a vulnerable code segment, it
marks the corresponding line(s) with a warning icon and also highlights the code in question
in red. It then provides several options to choose from. Besides ignoring the warning, the
programmer can also let ASIDE generate a secure template for the code in question. There
is also compact information in form of explanation pages within Eclipse and links to additional

30

sources.
As ASIDE was initially created for professional developers, one focus of this study was to

evaluate the specific needs of programming students, in contrast to professional developers.
While the latter primarily made use of the automatic code generation feature, students have
been less willing to do so and wanted to have more explanations and examples. Therefore the
study at hand focused on how students used the read more links and the provided explanations
and how and if they learned secure programming through the use of ASIDE.

In their evaluation they looked at how students adopted to the warnings and explanations
provided by ASIDE, which worked in the following way: “For input validation and output encod-
ing, ASIDE provides automatic code generation fixes, but for dynamic SQL statements, ASIDE
only provides warnings and explanations. Students must then manually modify the dynamic
SQL statement to a prepared SQL statement.” (ibid, 691) They found that 60% of the students
adopted their code by using prepared statements, after they encountered these warnings about
SQL injections and reading the explanation pages. And while “the course lectures, examples,
and textbook only provided dynamic SQL statement examples [...] even a short exposure to
ASIDE did result in a successful change in practice beyond merely automatically generating
code.” (ibid)

One of the important findings also was, that students liked the explanation web pages, as
“they were easy to understand and very helpful” (ibid) in grasping the concepts and secure
mitigations against code vulnerabilities . This highlights the importance to invest in good expla-
nations and reference materials.

It seems that integrating a tool like ASIDE in the course environment is a good approach to
compromise between not just doing security as an post-hoc add-on and also not taking away
resources from established courses. For SCRAP and any other tool that tries to generate
awareness after code was written and submitted, it is just the more important to have high qual-
ity explanations and materials, otherwise the adoption rate might be quite low.

A follow up study in 2015 was conducted by Michael Whitney and the three authors of the for-
mer study from 2013. While in 2013 the tool was still called ASIDE, short for Assured Software
IDE and reflecting its origin as a support tool for professional developers, now it was called
ESIDE, short for Educational Support in the IDE. The focus of the tool shifted towards providing
“instructional guidance and educational materials about secure coding in a contextually based
real-time manner as students are writing code” (Whitney et al., 2015, 60).

While the first study only evaluated the use of ASIDE in a 3-hour lab study, this study follows
up with an evaluation of ESIDE in two field studies within the same advanced web development
course, one covering the period of a single course assignment, the other covering the whole
semester. The results of these studies “demonstrate that ESIDE does raise security awareness,
but that the timing of the tool’s introduction, and the support of instructors for tool use may be
critical for motivating students to learn and practice secure coding skills” (ibid) Notably they
point out that in 2015, still, there “has been limited research in incorporating security principles

31

across a standard computing curriculum” (ibid, 61)
They also list a variety of approaches to feature secure coding in computing curricula (ibid,

cf. 60-61):

• adding lectures to existing (programming) courses

• adding elective courses on secure coding

• security tracks in the curriculum

• whole programmes in information security

But a major problem that persists with all these approaches is, that it caters to the interests
of those who explicitly want to include security into their work and leaves out the majority of
those who learn programming within their curricula and come to an understanding that security
is something they could add on later, if they develop a special interest.

ESIDE should tackle this problem by integrating secure coding awareness and solutions
within the assignments, while the course content itself would not have to be redesigned in
a major way and also the course instructors did not need to develop explicit secure coding
expertise.

While the results showed that the use of ESIDE increased students’ awareness, the submit-
ted code for the assignments did not necessarily improve in terms of security. The main factor
for that was time constraints and that students often would have liked to follow up on ESIDEs
suggestions and hints, but have been primarily struggling with submitting a functional solution
until the assignment deadline.

So far we have seen that good learning materials and explanations on how vulnerabilities are
introduced in code and how to mitigate them are key to successful secure coding education.
This will be crucial for SCRAP as well. Nevertheless not only (online) materials are important
but also the course design and how interactivity is fostered online or in person.

A study comparing an on-campus course and a MOOC course on software security, using
the same contents, is provided by Theisen et al. from North Carolina State University (Theisen
et al., 2016). Their aim was to find out how both versions (in-person and MOOC) draw in differ-
ent sets of students and how effective the learning is in both types of courses. Another goal was
“to assist educators in constructing software security coursework by providing a comparison of
classroom courses and MOOCs” (ibid, 1).

Drawing on educational research they suggest to use a flipped classroom setting for the on-
campus course, where the classic lecture parts are transferred to an online space, through
videos or podcasts, potentially extended with text, in order to use the physical presence in the
classroom so that “students interact with the instructor and each other during class time” (ibid,
2). This increases student engagement. And as this is a blended learning approach, a lot of

32

work that is put into material preparation can be reused and also implemented in MOOCs and
other forms of online learning.

One suggestion from research into MOOC structuring for efficient learning is that “lectures
incorporated into MOOCs should be broken into manageable chunks for students, typically 5-15
minutes each” because this is “more manageable for students and prevents their minds from
wandering as often.” (ibid). In either case (on-campus vs. MOOC), fostering discussion among
students helps to increase engagement. This should be actively facilitated by lecturers using
open-ended questions. Theisen et al. specifically refer to the Coursera guide which “suggests
seeding questions during lectures” and that a “few minutes of lecturing should be interrupted
by questions periodically.” (ibid, 3). They also drew on peer reviews by students, as they
“provide more in-depth projects and assignments for students without overwhelming the course
staff, as non-automated assignments are unfeasible once courses hit large numbers of enrolled
students” (ibid).

The focus of the offered Software Security course lay on types of vulnerabilities and how to
prevent or remove them. The courses aimed at increasing awareness and skills in security risk
management, security testing, security requirements, validation, and verification, as well as in
secure coding techniques. All the materials from the on-campus course are available online
(Williams, Laurie, 2016). As a plattform for the MOOC they chose Google Course Builder,
which is an online education platform developed and provided by Google under an open source
license (Apache 2.0). They chose it due to previous courses at North Carolina State University
having been deployed successfully with it. While they aimed to make the on-campus course
and the MOOC “as similar as possible, limitations of the MOOC format meant that there were
some differences between the courses.” (Theisen et al., 2016, 4) Apart from the missing face-to-
face interactions in the MOOC, which have been substituted by online discussion in a subreddit
on reddit.com, there where no group projects designed into the MOOC and the peer review
of assignments did not work properly in the MOOC and was finally scrapped due to technical
issues with the Google Course Builder platform. And while the on-campus course students
where bound to the fixed schedule of class dates, the MOOC students could progress in the
course in a relatively self-paced way.

Among the learned lessons from this research are (ibid, 9):

• Preparation & facilitation of MOOCs is very time consuming

• Peer evaluation is challenging in general, and even more so in MOOCs due to increased
scaling effects

• If a learning platform only supports multiple choice and true/false questions for assess-
ments, the learning opportunities are limited.

• Google Course Builder and Google Forms had several drawbacks and instabilities and
platform choice for MOOCs does matter a lot.

33

• Informal communication, e.g. in form of videos, throughout the course and tied to current
(news) events helps students to engage with the topic.

• When facilitating communication on message boards, timely feedback is of key impor-
tance. Additional use of synchronous communication (e.g. webinars) might increase
engagement.

• MOOC students - due to often being engaged in work and other projects - tend to under-
estimate a courses demand on their time, so flexibility in this regard is important.

These points should be kept in mind when integrating secure coding into existing introduc-
tory programming courses. As most of them relate to online/distance learning in MOOCs, they
also point towards crucial features that could be strengthened in existing on-campus courses,
especially if interactivity is not yet explicitly designed into the courses.

A more specific focus on integrating additional materials in on-campus courses was already
presented above in (Raina et al., 2015) and (Raina et al., 2016). In general the Security Injec-
tions @ Towson project seems promising to spread the integration of secure coding issues into
(introductory) programming courses. A more detailed view is provided in another 2016 publica-
tion out of the same project (Taylor & Kaza, 2016). Their starting point is that, still, “the majority
of computing students are not exposed to principles of secure coding. Additionally, most un-
dergraduate security courses are upper level and are offered after students have established
coding techniques” (ibid, 2). While it is now a generally acknowledged principle that security
should not just be seen as an add-on but be built in from the start, this approach to teach
“students to program first and learn secure coding later” (ibid) is a practice that fundamentally
contradicts the requirements of today’s computer science education.

Besides the necessity of integrating security education early on in computer science educa-
tion for effective adoption of secure coding practices, they argue, there are additional organi-
sational advantages to integrating secure coding into existing programming and other early CS
courses, instead of creating additional elective courses. Because in this way security education
can be incrementally integrated by small changes in existing courses. Also the security mindset
is established across the curriculum and therefore not tied to a single issue. This also should
lead to an increased effectiveness of those elective security topics that are already available.
Nevertheless, “effective security integration has significant challenges—a lack of resources,
courses that are overcrowded with difficult topics and struggling students, faculty who are un-
trained in security, and an academic culture that fails to recognize the consequence of software
vulnerabilities” (ibid, 4).

The primary objectives for their security injection modules are to increase the security aware-
ness of students and their abilities to apply security principles and secure coding practices as
well as to increase the awareness of secure coding concepts among the computer science
faculty (ibid, 5), as “many instructors are untrained in developing secure software” (ibid, 14).

Each security injection module consists of the following 5 components:

34

• background information on the topic, including examples and links to articles

• a “code responsibly” section with tips how to code safely

• lab assignments

• security checklists for how to spot the vulnerability in code

• discussion questions to encourage reflection and engagement with the topic beyond the
assignment submission

The modules are designed for stand-alone use and should be applicable with “little or no
instructor intervention”, and the “[e]stimated completion time for most modules is 20 to 25 min-
utes” (ibid, 7). This could also be useful for SCRAP and similar efforts of post-hoc integrations
in introductory programming courses.

By organising workshops and training sessions at their own university as well as their partner
institutions they facilitated instructor buy-in and adoption of the security injection modules at
their institutions. By organising workshops, panels and birds-of-feather sessions at conferences
on computer science education they reached out to the broader community and tried to increase
awareness for secure coding in computing education contexts.

Additionally they created a Build-A-Lab programme, spanning three terms with workshops
helping teachers to adopt the existing modules and to create new ones. This lead to a few new
modules being developed and integrated in the Security Injections @ Towson project.

Finally they also made their content available on a website at http://www.towson.edu/
securityinjections. Meanwhile this site might already have changed, and its URI redirects
to http://cis1.towson.edu/~cyber4all/index.php/security-injections_home (latest check on 2020-
04-04). But unlike many other projects reviewed in this thesis, the site is still available and
seems to be under active maintenance. The crucial issue is pointed out by the authors them-
selves: “Although it is challenging to develop quality content, it is as hard to maintain it, let
people know about it, provide access, and get people using it.” (ibid, 15)

A closer look at their workshop listing (Towson University, 2017) tells us that they had con-
stant events until July 2017. Afterwards either the project page did not get updated or they
stopped doing the workshops. The latter is quite likely and potentially due to the end of some
project funding. An inquiry at the authors might close this open question, but in this case I want
to use the likeliness of an ended funding to point to a bigger structural issue:

If the advancement and integration of secure coding into computer science education shall
be sustainable, no single project can accomplish this. Rather it needs continuous maintenance
and planning for corresponding resource allocation in the educational institutions.

35

http://www.towson.edu/securityinjections
http://www.towson.edu/securityinjections
http://cis1.towson.edu/~cyber4all/index.php/security-injections_home

2.4 Related Work

In a 2019 master thesis at the TU Wien, titled “Continuous Security in DevOps environment:
Integrating automated Security checks at each stage of continuous deployment pipeline”, Mo-
hammed Jawed analyses security requirements and methods to fulfil them for the different
stages in the software development lifecycle (Jawed, 2019).

Regarding the requirements to a securely developed software Jawed relies on the OWASP
Application Security Verification Standard (ASVS), which guides along the lines of what should
be verified and tested (ibid, 19). While Jawed used version 3.0 of the OWASP ASVS, meanwhile
version 4.0 is available (OWASP, 2020a). Jawed also mentioned along the lines of developers
becoming aware and understanding such controls that are defined in standards like the ASVS,
that little games like the OWASP Cornucopia (OWASP, 2020b) or OWASP Snakes And Ladders
(OWASP, 2020d) can help to introduce these issues (Jawed, 2019, 21). For further research it
would be interesting to evaluate the use of these games in introductory programming courses
that integrate secure coding.

The section on secure coding practices is rather short and only lists several (poorly refer-
enced) standards or guidelines as “Industry best practices” (ibid, 35), among them most notably
the OWASP Secure Coding Practices, which is available as a checklist, currently in version 2
(OWASP, 2010).

For the SAST part of the toolchain, Jawed lists SonarQube as the F/LOSS tool of choice
(Jawed, 2019, 59-60), although they use the proprietary Fortify Static Code Analyser for their
own toolchain (ibid, 41). Other F/LOSS tools for the develop and build stages listed there, which
are potentially useful to gain additional feedback on secure coding issues are:

• OWASP Dependency Check

• DevSkim

• Phabricator

• CheckSec

• Jenkins

This highlights the broader focus on the whole SDLC of full-fledged software development
projects. For SCRAP at this stage they are less applicable. But the use of SonarQube reinforces
my own choice for the static analysis tool used in SCRAP. DevSkim on the other hand might
be quite useful for the integration into introductory programming courses in the same way the
ASIDE/ESIDE approach suggests (Teto et al., 2017) (Whitney et al., 2015) (Zhu et al., 2013).
DevSkim also is the “spiritual successor” to Yasca, as Michael Scovetta puts it. But while this
makes it more usable for integrating secure coding as a principle in introductory programming
courses, being an IDE plugin makes it less useful for direct integration into SCRAP.

36

A 2016 master thesis in IT Security at the FH Technikum Wien by Christoph Lindmaier fo-
cuses on automated security tests for web applications (Lindmaier, 2016). But while it provides
a more detailed insight into the vulnerabilities listed in the OWASP Top 10, its practical part
focuses on dynamic application security testing (DAST), using primarily OWASPs Zed Attack
Proxy, while the focus of this research is on SAST tools and how to build a toolchain and web
service that can be integrated in existing code submission systems.

37

3 Research Question

The main research questions of this thesis are:

1. Can we build a toolchain of open source secure code analysis and code vulnerability
analysis tools, to analyse solutions to programming exercises and to automatically create
qualitative feedback?

2. What are the contextual (that is, organisational and educational) requirements for applying
such an approach to gain secure coding awareness among students?

To answer these questions and to build a prototype that can be used in future research to
evaluate student responses to the automatic feedback, there are at least the following sub
questions that should be answered:

1. What is the current state of secure programming/software engineering education?

2. What open source tools for code analysis are available and useful for this case study?

3. How are those tools best combined to analyse code submitted by introductory program-
ming students?

4. Which patterns can we detect and what feedback can we generate out of it?

Findings generated in this project will be of an exploratory kind, as the limited resources for a
master thesis project cannot be used to generate a full-fledged qualitative case study. The aim
of the project is:

1. to provide a technological basis for further research into this area, by developing the
platform prototype, and

2. to provide some initial insights into how reasonable a further adoption of this approach for
introductory programming courses is.

The main target audience is to be found in the academic sector, namely developers and
DevOps in higher education institutions as well as academics working on educational technolo-
gies and didactic in computer science, especially when it comes to knowledge transfer in the
area of programming.

38

4 Methods

To address the described research questions, two main methods are applied. First, an exten-
sive literature review - described in the next section - is used to gather information on the field of
software security education and useful approaches that have already been tested in this regard.
Second - described in the section thereafter - an API is developed with a prototype implemen-
tation of a web service and a web UI, after an evaluation of available F/LOSS static analysers.
The API and the implemented prototype components facilitate a RESTful architectural style to
provide a platform that can be extended with and integrated in further research.

4.1 Literature review

This chapter provides insights into my process to review current literature on topics of secure
coding and software security education. It also highlights all found relevant materials. While
the core literature is evaluated in much more detail in chapter 2 on the current state, subsection
4.1.2 on core and extended literature gives a brief overview of additional findings, that might
prove valuable to further and extended research projects.

4.1.1 Process and initial findings

To gain an overview of the field and identify core materials and reference, I chose the following
approach to literature search and review:

1. Browse local university library catalogues, namely those of the FH Technikum Wien
(FHTW), the TU Wien (TU) and the University of Vienna (UV). Use the search terms
“secure code”, “secure coding”, “software security” to identify core materials on secure
coding issues. Use the search term “secure code teaching” and “software security edu-
cation” to identify a subset of materials that deal with issues pertaining to feedback gen-
eration in regard to secure coding. Use the search term “computer security” to identify
potential standard works that also encompass the topic of secure code.

2. Browse journal databases, namely the Directory of Open Access Journals, the Science
Direct College Edition and the IEEE Xplore Digital Library for the same search terms
as above. Access to the latter two is provided by FHTW. For Science Direct the Physical
Sciences and Engineering collection is contained in the access package. For IEEE Xplore
it contains the IEEE/IET Electronic Library.

39

3. Browse one of the local university libraries for “php security” and “php secure code”.

4. Do a web search on php security and python security to identify auxiliary resources on
the two languages in use in this project.

For the first step I started with the FHTW catalogue. There I found 2 overall hits on “secure
code” and the same two hits on “secure coding”. While one was a book on Java 9, that also
deals in how to write secure Java code (Lavieri & Verhas, 2017), the other was a genuine book
on writing secure code, which systematically introduces all code-based vulnerabilities and pro-
vides language-agnostic strategies how to tackle these, sprinkled with concrete examples in
different languages (Howard & Le Blanc, 2003). As it turned out later throughout the literature
search, this is one of the few resources dealing with secure code in its core. Although the
second edition was from 2003 and there is only a 2009 reprint of this second edition, a prelimi-
nary skimming of the books content showed that it is a highly relevant reference on the topic of
secure coding.

For the further search of the FHTW catalogue, I continued with the search term “software
security ”. This led to 30 hits. 14 of them are e-books among which there was 1 guideline on
software development for security-critical areas (Kriha & Schmitz, 2008), detailing the different
components and their management in secure software development, but not specifically about
secure code. Also there was 1 practical handbook on security of web applications (Rohr, 2018).
The other 12 e-books did not specifically deal with secure software development. There also
were 7 theses among the search hits, 2 of which contained security analyses of specific soft-
ware. None of them were specifically about secure coding. The other 9 hits all have been
books, only one of which was about secure coding and secure software development, namely
(Howard & Le Blanc, 2003), which I already identified in the search for “secure code”.

As the search terms “secure code teaching” and “software security education” are subsets of
the searches already conducted, this yielded no new results.

Searching for “computer security ” in the FHTW catalogue yielded 127 hits, with the oldest on
cryptology from 1985 (Horster, 1985). 70 hits dated between 2012-2019. The two most relevant
of these were (Stallings & Brown, 2015) and (Conklin et al., 2016), 2 standard handbooks on
computer security, also containing chapters on secure code and secure software development.

The reason for these relatively small number of overall hits is that the FHTW library catalogue
does not contain papers and conference proceedings. But the FHTW provides access to Sci-
ence Direct and the IEEE Xplore Digital Library, which I used later for identifying more materials.
But before going into these libraries, I continued with searches at TU Wien and University of
Vienna.

The statistics laid out in tables 5 and 6 was obtained on 2019-07-22 by browsing the li-
brary catalogues at https://catalogplus.tuwien.ac.at and https://usearch.univie.ac.at, showing
the number of hits in these catalogues for the different search terms.

In both libraries nearly all references I found are also available online through the library
system. While the TU has in total much more hits, a substantial part of them is comprised of

40

https://catalogplus.tuwien.ac.at
https://usearch.univie.ac.at

Table 5: Results of TU Library Search.

Search Term Hits Peer-
reviewed

Books News-
paper

Conf

secure code 219244 61417
(28%)

7702
(4%)

79815
(36%)

13921
(6%)

secure coding 49301 24197
(49%)

1494
(3%)

11349
(23%)

5264
(11%)

software security 1080952 159977
(15%)

13247
(1%)

563940
(52%)

53801
(5%)

secure code teaching 14084 7204
(51%)

2670
(19%))

806 (6%) 1257
(9%)

software security education 161074 51197
(32%)

3991
(2%)

45348
(28%)

8899
(6%)

computer security 815960 179495
(22%)

20752
(3%)

252978
(31%)

87331
(11%)

Table 6: Results of UV Library Search.

Search Term Hits Peer-
reviewed

Books News-
paper

Conf

secure code 154096 120260
(78%)

6052
(4%)

1066
(1%)

13712
(9%)

secure coding 63865 54235
(85%)

789 (1%) 254 (0%) 5006
(8%)

software security 321630 219250
(68%)

7522
(2%)

3172
(1%)

54735
(17%)

secure code teaching 26655 21814
(82%)

2426
(9%)

137 (1%) 905 (3%)

software security education 99179 79699
(80%)

1661
(2%)

1237
(1%)

8238
(8%)

computer security 424194 250574
(59%)

14822
(35%)

4575
(1%)

89305
(21%)

41

newspaper articles, while at the UV the majority is comprised of peer-reviewed journals and
conference proceedings (together making more than 80% of the total hits).

The difference in the two result sets is also displayed in figures 1 and 2. From these two dis-
tributions there is not much to conclude, except that apart from the massive collection of news-
paper references in the TU catalogue, both university libraries seem to hold similar amounts
and distributions of search results regarding the 6 search terms. From the comparison of peer-
reviewed papers, conference proceedings, and books respectively between the two libraries, as
shown in figures 3, 4, and 5 can be assumed that similar sources are available when it comes
to conference proceedings, but for peer-reviewed papers and books the TU library catalogue
could provided a slightly broader perspective on the topic. Therefore I used the TU library cat-
alogue as a primary source to identify relevant materials. The UV library catalogue was used
later to do an auxiliary check if the TU results sufficiently covers the issues of secure coding
and issues of teaching and feedbacking on (in)secure code.

Figure 1: Logarithmic distribution of search results in the TU library catalogue.

In order to identify relevant materials from the TU library in context of this master thesis
project, I had to drastically reduce the amount of results. Therefore I applied two filters for all
search terms:

• Publication date between 2012 and 2019 (inclusive)

• Order by relevancy and use the first 100 hits

These results were screened based on titles first. Those which seemed relevant I further
screened based on abstracts, summaries and table of contents where available.

42

Figure 2: Logarithmic distribution of search results in the UV library catalogue.

Figure 3: Comparison of peer-reviewed search results between TU and UV.

43

Figure 4: Comparison of conference search results between TU and UV.

Figure 5: Comparison of books search results between TU and UV.

44

4.1.2 Core and extended literature

First I started with “secure code teaching” and “software security education”, as these are the
smallest result sets. For “secure code teaching” the search for books yielded no relevant mate-
rial.

The search for peer-reviewed journal provided only one paper among the first 100 hits that
came close (Popa, 2012), but it deals mostly in securing the software development life cycle
and software assurance. What proved more promising was to use an additional filter “Teaching
Methods” as topic. This reduced the overall result set to 65 entries.

While not directly on issues of secure coding, (Sorva, 2013) describes struggles of students
in introductory programming courses. They provide insights that might also be valuable for
adopting secure coding practices.

Also not directly on secure coding, but on social representations of cybersecurity by students
in introductory information systems courses, (Pawlowski & Jung, 2015) provide some sugges-
tions for approaches to instructional design that help raise the awareness of cybersecurity.

On the aspect of game-based learning (Giannakas et al., 2018) provide a critical review of
publications on mobile game-based learning from 2004 to 2016. Although this is not a core
topic of my thesis, it provides some thoughts on the potential gamification of SCRAP.

Removing the publication date filter additionally revealed (Bishop, 2006) as potentially rele-
vant auxiliary material.

When searching for conference papers with the search term secure code teaching between
2012 and 2019, several relevant references could be identified.

(Chi et al., 2013) describe modules they built “for teaching secure coding practices to STEM
students” and provide some evaluation results.

(Raina et al., 2014) assess “modules for CS0, CS1, CS2 and Computer Literacy courses that
target key secure coding concepts including integer overflow, buffer overflow, and input valida-
tion”. While this paper’s full text is not accessible through the TU library catalogue, the ACM
Digital Library listed (Kaza et al., 2015) and (Kaza & Taylor, 2018) as additional resources. All
of them provide more references with context information on the state of the field. Additionally
(Raina et al., 2016) is listed in the TU library and accessible as full text, describing a study with
53 students as participants.

(Zhu et al., 2013) developed a prototype tool called “ASIDE” for educating students on secure
coding. The tool was developed as an IDE integration. Apart from that the aim to educate
students on secure coding along their programming exercises and to evaluate this tool is similar
to my own approach.

(Whitney et al., 2015) is an additional report on their project, describing a field study on their
tool applied to a Web programming course.

(Xie et al., 2015) is a proposal to utilize Microsoft’s Code Hunt platform in order to increase
secure coding skills among programmers.

(Taylor et al., 2013) describes a panel session at the 44th ACM technical symposium on
computer science education tackling “the myths and realities” of teaching secure coding.

45

(Weir et al., 2016) describe how game and story telling aspects can be used in programming
education to foster secure coding practices, with a focus on mobile apps.

(Schuckert et al., 2017) examine SQL injections in PHP code and if and how source code
patterns changed over time, concluding that "developers had software security in mind, but
nevertheless created vulnerabilities".

Based on a case study of Cross-Site Scripting attacks (Teto et al., 2017) argue for the need
to better integrate Defensive Programming into computer science courses.

(Hooshangi et al., 2015) analysed the quality of coding exercises in an introductory security
course. One of their results was that “students who learn to write good defensive programs can
write effective attack programs, but the converse is not true”.

Another study highlighting the value of defensive programming is based on student exercises
where students had to develop reference monitors in Python, on which other student’s attack
code should be run (Cappos & Weiss, 2014).

Based on teaching an introductory programming course to students for four years
(Pournaghshband, 2013) argues for the value of including the security mindset early on in
computer science education.

Outlining two models of an introductory course to cryptography and computer science in a
traditional liberal arts college, (Buchele, 2013) provides context and ideas on how to make
computer security knowledge more accessible.

In an analysis and comparison of software security patterns to design patterns, (Bunke, 2015)
provide some insights for the usefulness of software security patterns.

Moving on to the search for software security education revealed several of the findings from
the previous search, but it also brought to screen several additional resources, that are highly
relevant for this work.

(Bishop et al., 2015) is not a monograph or textbook but, as conference proceedings, came up
in the search filtered for books. It includes an exclusive section on Software Security Education
and can be treated as a recent core reference, especially (van Niekerk & Futcher, 2015), (Raina
et al., 2015), and (Jøsang et al., 2015).

(Jawed, 2019) is a TU master thesis on integrating automated security checks in all stages of
a CD pipeline. As SCRAP could be seen as one stage of such a pipeline, this reference might
yield some insights into how to optimize the code analysis.

Somewhat related is (Kernegger, 2013), also a TU master thesis, investigating how to improve
the error detection rate with automated security testing tools. But due to its focus on testing
instead of code analysis, I only use it as a peripheral source for context.

Among the highly relevant papers found are (Taylor & Kaza, 2016), which relates to the same
research projects as (Raina et al., 2016), (Kaza et al., 2015) and (Kaza & Taylor, 2018)

In the search results for software security education and filtered by conference proceedings,
I encountered several references, already seen in other searches before. Also there where
several works on general aspects of information & software security education, which I filtered

46

out, because they did not focus on secure code specifically.
(Jøsang et al., 2015) argue that while there is industry agreement that security should be

part of the whole software development life cycle, there is much less focus on making security
part of software development education. They understand software development education that
does not explicitly address security and secure coding as a major contributor to the software
vulnerability landscape.

(Uskov, 2013b) reports on design, implementation and evaluation of the ‘state-of-the-art un-
dergraduate and graduate curriculum and courseware’ in software and web application security
(SWAS) at Bradley University. (Uskov, 2013a) is a more extensive version on the same project.

(Theisen et al., 2016) report on a comparison of software security coursework in an on-
campus classroom and a Massively Open Online Course (MOOC) version.

(Pancho-Festin & Mendoza, 2014) present their learning from integrating security topics into
undergraduate software engineering courses, with a special focus on web application security.

Moving on to the search for secure code and secure coding, to reduce the relevant resource
set to a reasonable amount in context of this master thesis, I used a logical and operator for
the terms secure, code, and coding, which reduced the overall results to 22.976 hits in the
TU library catalogue, which in turn filtered by years from 2012 onwards resulted in 14.511
hits. These have been filtered then for books (582 hits), papers (6.353 hits) and conference
proceedings (1.775 hits) respectively.

A book on software quality assurance by (Walkinshaw, 2017) contains sections about testing
and code safety, that might provide insights into the state of secure coding in industry.

(Sahu & Tomar, 2017) analyse web application code and develop a graph-based interactive
prototype system to help developers follow secure coding standards.

(Kaza et al., 2018) is another report on Towson University’s Security Injections project, which
came up several times in the search for software security education. In this short article they
reference the project page at https://www.towson.edu/securityinjections, which holds valuable
resources in form of short modules teaching secure coding concepts, which can be injected in
more classical computer science courses.

(Nembhard et al., 2019) develop and evaluate a recommender system for Java code to find
and remediate security vulnerabilities. The recommender system approach is not directly rele-
vant for the SCRAP prototype, but it might be interesting to evaluate the use of a recommender
system as an add-on in future research.

(Anis et al., 2018) present a “system that helps developers to implement security measures
on the client side code based on the best practices of secure coding” by developing an integrity
verification module for JavaScript-based applications.

(Rahaman et al., 2018) propose a “90-minute tutorial to teach participants the principles and
practices of Java secure coding”, focusing on API misuse and introducing a tool to automatically
detect API misuse in Java code.

(Meng et al., 2018) identify a “huge gap between security theory and coding practices” by

47

www.towson.edu/securityinjections

analysing StackOverflow posts related to Java and secure coding.
(Heymann & Miller, 2018) describe a tutorial on secure coding practices and assessment

tools. In this course they also present “SWAMP”, a free and open “facility to provide access to
a large collection of tools for a variety of languages and environments”.

Given the extensive results of the searches so far, I limited the search for software security
to the first 50 results filtered for books from 2012 onwards, that do not deal with the manage-
ment of software security or a secure development life cycle, but focus primarily on providing a
technical overview of issues for secure software development.

For the last and most general search term, computer security, I only conducted a search for
books, given the extensive results already produced by the other searches. Additionally I filtered
for printed books, as the result set without this filter mostly contained conference proceedings.
Although the result set was much more extensive than for the same search at the FHTW, the
search yielded the same two relevant results, only with a greater variety on the available edi-
tions (Stallings & Brown, 2018) (Conklin et al., 2016).

Regarding the search term php secure code there wos no hit in the FHTW library and 1 hit for
php security, a handbook on security issues in PHP and how to solve them with secure coding
patterns and approaches in PHP (Snyder et al., 2010). As its publishing date is in 2010, it is
referring to PHP 5.3, so this could be counted more as a historical back reference.

In a web search on python security, one notable article describing 10 common security
gotchas in Python and how to avoid them could be found (@anthonypjshaw, 2018).

From all of the above the around half of the resources have been classified as core materials
and are reviewed in more detail in chapter 2, as listed in footnote 1.

A notable additional source that I found in the core literature, is (Stivalet & Fong, 2016). This
would certainly be valuable core material for future research and a thorough evaluation of an
analysis platform, as they provide a rigid test case generator. But due to the scope of this work
and the already available vulnerability code through DVWA, this reference is categorised as
auxiliary material nevertheless.

All other material was classified as further auxiliary material that could not be reviewed in
detail, but should be evaluated for further research. They are listed in footnote 2.

1Core literature: (Howard & Le Blanc, 2003) (Sorva, 2013) (Chi et al., 2013) (Uskov, 2013b) (Uskov, 2013a) (Zhu
et al., 2013) (Pancho-Festin & Mendoza, 2014) (Hooshangi et al., 2015) (van Niekerk & Futcher, 2015) (Raina
et al., 2015) (Jøsang et al., 2015) (Whitney et al., 2015) (Conklin et al., 2016) (Raina et al., 2016) (Taylor &
Kaza, 2016) (Theisen et al., 2016) (Schuckert et al., 2017) (Teto et al., 2017) (Sahu & Tomar, 2017) (Anis
et al., 2018) (Heymann & Miller, 2018) (Kaza et al., 2018) (Jawed, 2019)

2Auxiliary literature: (Bishop, 2006) (Snyder et al., 2010) (Buchele, 2013) (Kernegger, 2013) (Pournaghshband,
2013) (Taylor et al., 2013) (Cappos & Weiss, 2014) (Bunke, 2015) (?) (Pawlowski & Jung, 2015) (Xie et al., 2015)
(Weir et al., 2016) (Walkinshaw, 2017) (Giannakas et al., 2018) (Meng et al., 2018) (Rahaman et al., 2018)
(Rohr, 2018) (Nembhard et al., 2019)

48

As the search conducted so far already yielded substantial results, several of them retrieved
through the TU library’s access to IEEE Xplore and the ACM Digital Library, I did not conduct an
additional systematic search in the IEEE Xplore and Science Direct catalogues provided by the
FHTW library. A further screening of these databases would certainly make sense for a larger
scale follow up project.

4.2 Prototyping RESTful Webservices

The development of the SCRAP prototype follows the REST architectural style, as it was pro-
posed already in 2000 by Roy Fielding in chapter 5 of their dissertation (Fielding, 2000), or
rather as what nowadays is more broadly known as a RESTful web service, which is nicely
summarized in the REST API Tutorial (restfulapi.net, 2020).

One reason for this approach ist that already at the dawn of the REST architectural style in
the beginning of the current millennium, the value of web services for distributed application
systems was more and more increasing (Alonso et al., 2004). And while for some time SOAP
was still the primary way to implement web services, meanwhile REST is the major approach
to designing and implementing web services, especially when it comes to services that are not
only used within a single organisation but that can or should be exposed to third parties or the
public (Lange, 2016).

And while the W3C Working Group in 2004 still wrote that the purpose of “REST-compliant
Web services” is “to manipulate XML representations of Web resources using a uniform set
of ‘stateless’ operations” (W3C Working Group, 2004), today the JSON format (short for
JavaScript Object Notation) is widely used in RESTful web services.

The advantage of the RESTful approach in combination with using JSON as the data ex-
change format is that it lends itself very much to rapid prototyping. For one, there is no need
to use any other underlying technology than HTTP, which is already available in any browser,
can be accessed by simple curl calls from the command line and is not only easy to parse for
computers but also quite readable for humans, in that case particularly developers.

For these reasons I have chosen to implement a RESTful web services, which can be quickly
prototyped, easily extended and also integrated into any other system that is capable of speak-
ing HTTP to the server where the SCRAP web service resides.

It is beyond the scope of this thesis to also introduce the RESTful approach in detail, but es-
pecially for interested developers the above mentioned REST API Tutorial and Kenneth Lange’s
Little Book on REST Services (Lange, 2016) are good and compact resources to dig into the
topic. But even without a deep understanding of REST and the principles of RESTful web ser-
vices, the approach will explain itself through the description of the prototype in the following
chapter. A basic understanding of HTTP should be enough to follow what is going on, which
is another reason why RESTful web services are so successful, although not every RESTful
webservice does strictly adhere to all REST principles.

49

https://restfulapi.net/
https://www.kennethlange.com/

5 Prototype

5.1 Design

A lot of the architectural design of SCRAP is made explicit in the following section 5.2 on the
implementation of the SCRAP prototype. Here I want to take a quick look on some of the key
requirements for such a platform, if it should provide any added value in actual introductory
programming contexts.

This is of course a preliminary perspective, which would have to be extended and made
more concrete in context of an actual organisation that wants to adopt such an approach. This
is discussed in more detail in section 5.3 on the evaluation of the prototype and in the final
conclusion chapter 7.

The key requirements which can be formulated from the inputs of the literature review and
my own experiences in introductory programming contexts (as a learner as well as a teacher
and facilitator), are as follows:

• The system should provide a core server component that is easily accessible from differ-
ent clients and can be integrated through a well documented API into other services that
already handle code submissions.

• There should be a lightweight web client available, which can be used additionally to the
integration into other code submission systems, so that students can explore their code
vulnerabilities on their own and not just post-hoc to their code submissions.

• When providing the results of a scan and information on the issues found it is important
to make transparent how the code was scanned and how users could apply the scan on
their own

• The technical system should be well documented, in a way that different institutions can
evaluate and integrate it into their own contexts. Otherwise there is a strong likelihood that
the project code grows old and at some point becomes one of the many originally promis-
ing but now unmaintained and defunct projects to foster software security education -
or in other words: SCRAP might quickly become scrap, if extendability and accessibility
through good documentation are not provided.

On the matter of requirements, we also have to face the fact that when it comes to secure
coding we need not only the functional requirements that have to be implemented but also ex-
plicit “security requirements [which] need to be both specific and positive” (Conklin et al., 2016,

50

Ch. 18, Section: Requirements Phase). As we cannot assume such specific requirements can
be formulated in context of introductory programming courses, the generated feedback of the
prototype system has to be formulated accordingly. We cannot assume that students had suf-
ficient exposure to secure coding issues. For all instances of potentially vulnerable code, that
our toolchain finds, we have to provide general information and context of the vulnerabilities as
well as examples of secure code that solves the same thing.

Regarding the rule sets for scanners and the explanations of vulnerabilities there certainly
has to be a major effort to generate new content for a productive use of SCRAP. In terms of the
prototype I can only provide an example on how rules and explanations can be added. But if
an approach as presented with SCRAP should be successfully adopted in actual educational
organisations, the major effort will not be a technical one to implement the prototype into a
fully functioning platform, but an educational one, drawing from the resources like found in the
literature review, to generate good explanations and to adopt the scanner rule sets to the actual
code submissions in introductory web application programming courses.

The CWE provides a slice view on Weaknesses in Software Written in PHP, listing many
common weaknesses in PHP code, including descriptions and potential ways to mitigate the
problem. This resource could be used for the creation of additional scanner rules and explana-
tions.

But certainly this approach does not have to be limited to PHP code. Especially when it
comes to available F/LOSS scanners, which can be integrated into SCRAP, there might be
even better opportunities for languages as C/C++ or Java, which are still very common for
introductory programming courses in the early semesters of computer science programmes,
before students can even peek into web application programming.

5.2 Implementation

5.2.1 REST API

My main design logic is derived from best practices in RESTful API design, as they are high-
lighted in an article on Best Practices in API Design by Swagger (swagger.io, 2020). Their three
key principles are to be easy to read and work with, to be hard to misuse and to be complete
and concise. For a project with the scope of a master thesis providing a functional prototype on
top of extensive literature research this means, that the API should also only focus on the most
relevant parts needed.

When it comes to the resources which are exposed through the API, then we only have three
core resources:

• Scans: those are the actual scans of submitted code

• Scanners: represent the different tools that are used by scans to find issues

51

https://cwe.mitre.org/data/slices/661.html
https://swagger.io/resources/articles/best-practices-in-api-design/

• Explanations: descriptions of vulnerabilities and mitigation strategies, which might be
referenced by scans in relation to the found issues

Beyond those three key resources there are also Files and Issues, which should be acces-
sible as resources. Files are the actual files that have been submitted for the scans and issues
are the one or more issues a scan did find on those submitted files. The issues then could
contain references to explanations, which should help the user to understand and mitigate the
security issue at hand.

This leads to the concrete API design which was encoded in a YAML format and adheres
to the OpenAPI 3.0.0 specification (Miller et al., 2020). The actual scrap_api.yaml file is part
of the scrap-api-server repository on GitLab, which is also available on the accompanying data
disc. The file’s content is also attached as a listing in the appendix. A marked up representation
(and documentation) of the API can be accessed through a link on the SCRAP project site at
https://scrap.tantemalkah.at, or directly on SwaggerHub, where it was initially created. While
SwaggerHub only offers limited options for free accounts, the SwaggerEditor and the Swagger
UI are F/LOSS tools which can be used in the same manner locally to create an OpenAPI
conformant API description and to generate a visually marked up documentation of it.

While the full specification of the SCRAP API is linked to and attached, for brevity listing 2
provides just the available paths and methods of the API with the summary of what it does:

1 paths:

2 /:

3 get:

4 summary: Retrieve the server and API meta information

5 /scans:

6 get:

7 summary: List all available scans of a user

8 post:

9 summary: Submit a new scan

10 /scans/{id}:

11 get:

12 summary: Retrieve meta information for a single scan

13 delete:

14 summary: Delete a single scan

15 /scans/{id}/files:

16 get:

17 summary: Receive listing of all files of a scan

18 /scans/{id}/files/{filepath}:

19 get:

20 summary: Retrieve a single file from a scan

21 /scans/{id}/blob/{filepath}:

22 get:

23 summary: Receive a single file from a scan

24 /scans/{id}/issues:

25 get:

26 summary: Receive a listing of all issues found in a scan

27 /scans/{id}/issues/{issueid}:

52

http://spec.openapis.org/oas/v3.0.0
https://gitlab.com/jackieklaura/scrap-api-server/-/blob/master/static/scrap_api.yaml
https://gitlab.com/jackieklaura/scrap-api-server
https://scrap.tantemalkah.at
https://app.swaggerhub.com/apis/tantemalkah/SCRAP/1.0.0
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-ui/

28 get:

29 summary: Receive a single issue from a scan

30 /explanations:

31 get:

32 summary: Get a list of available explanations

33 /explanations/{slug}:

34 get:

35 summary: Retrieve an explanation to a vulnerability

36 /scanners:

37 get:

38 summary: Retrieve a list of available scanners

Code 2: Listing of the available paths and methods in the SCRAP API

One advantage of using SwaggerHub instead of the stand-alone Swagger Editor and Swag-
ger UI is, that it comes with an automatically configured mocking server, which can be used to
test the API at specification time. Even right now (if SwaggerHub still exists and did not change
its policy in a major way), you should be able to click the link to the mocking server and get
some meaningful results, if your browser does know how to render JSON responses well (as
for example Mozilla Firefox does). You can achieve the same results with a simple curl call,
as depicted in figure 6.

Figure 6: Accessing the SCRAP API on the SwaggerHub mocking server with curl

While the API documentation on http://scrap.tantemalkah.at/api-doc/ describes the use of all
API endpoints and also provides code samples for several programming languages, the API
specification on https://app.swaggerhub.com/apis/tantemalkah/SCRAP/1.0.0 allows to view the
YAML source alongside a nicely rendered description of all API endpoints, parameters and
schemas used in the specification.

53

https://virtserver.swaggerhub.com/tantemalkah/SCRAP/1.0.0/
http://scrap.tantemalkah.at/api-doc/
https://app.swaggerhub.com/apis/tantemalkah/SCRAP/1.0.0

5.2.2 API server

A prototypical implementation of the SCRAP API, as described in the previous section, was
done in Python, using the Flask framework and its Flask-RESTful extension. The whole code
can be accessed in the scrap-api-server git repository on GitLab as well as a copy of it on
the accompanying data disc. The setup and how to clone the repository are described in the
repository’s README.md file.

The development environment was a TUXEDO InfinityBook Pro 13 v3 notebook with Ubuntu
18.04 and Python 3.6 in a virtualenv environment with all the dependencies listed in and instal-
lable with pip from the requirements.txt file in the repo’s root directory. The main requirements
to run the server are Flask, Flask-RESTful, Flask-Cors, mysql-connector, PyYAML and yara-
python. As a database MariaDB was chosen, which at the time was available from the Ubuntu
repository in version 10.1.44.

All files from a fresh clone of the repository (except for the .git directory) are presented in list-
ing 3, which has been generated with the command tree -a -I .git --charset=ascii

inside the repo’s root directory:

1 .

2 |-- common

3 | |-- auth.py

4 | |-- default_responses.py

5 | |-- __init__.py

6 | ‘-- sanitize.py

7 |-- config.sample.py

8 |-- db_init.sql

9 |-- db.py

10 |-- .gitignore

11 |-- __init__.py

12 |-- LICENSE

13 |-- README.md

14 |-- requirements.txt

15 |-- resources

16 | |-- explanation.py

17 | |-- explanations

18 | | |-- placeholder1.yaml

19 | | |-- placeholder2.yaml

20 | | |-- README.md

21 | | |-- sqli_unsanitized_id.yaml

22 | | |-- _template.yaml.sample

23 | | ‘-- yara.SQLi.yaml

24 | |-- files.py

25 | |-- index.py

26 | |-- __init__.py

27 | |-- issues.py

28 | |-- scanner.py

29 | ‘-- scan.py

30 |-- scrap.py

54

https://gitlab.com/jackieklaura/scrap-api-server

31 ‘-- static

32 ‘-- scrap_api.yaml

33

34 4 directories, 27 files

Code 3: Listing of the scrap–api–server repo’s contents

For a close look into all files I refer to the online scrap-api-server repository or it’s copy on the
accompanying data disc.

I will walk through some of the core components here. The main file to start the server is
/scrap.py, which sets up the Flask app and initialises basic configuration settings, taken from
/config.py (which has to be set up first, based on the template in /config.sample.py). It also
adds all the routes to the Flask app, which correspond to the paths presented in the API section
above. This is done by the code excerpt in listing 4:

1 api.add_resource(Index, ’/’)

2 api.add_resource(ListOfScans, ’/scans’)

3 api.add_resource(Scan, ’/scans/<string:id>’)

4 api.add_resource(ListOfFiles, ’/scans/<string:scanid>/files’)

5 api.add_resource(Issue, ’/scans/<string:scan_uuid>/issues/<int:issue_id>’)

6 api.add_resource(ListOfIssues, ’/scans/<string:scan_uuid>/issues’)

7 api.add_resource(File, ’/scans/<string:scanid>/files/<path:path>’)

8 api.add_resource(FileBlob, ’/scans/<string:scanid>/blob/<path:path>’)

9 api.add_resource(ListOfScanners, ’/scanners’)

10 api.add_resource(ListOfExplanations, ’/explanations’)

11 api.add_resource(Explanation, ’/explanations/<string:slug>’)

Code 4: Adding the routes to the Flask app

The classes that are handling the API requests, which are tied to the routes through the
api.add_resource methods in the above listing, are all imported from the files in the /re-
sources folder.

The most basic version of a resource handler is the Index resource class in /resources/in-
dex.py, and displayed in listing 5:

1 class Index(Resource):

2 def get(self):

3 return {

4 ’api’: ’scrap’,

5 ’version’: ’1.0.0’,

6 ’openapi_file’: url_for(’static’, filename=’scrap_api.yaml’),

7 ’definition’:

’https://app.swaggerhub.com/apis/tantemalkah/SCRAP/1.0.0’,

8 ’documentation’: ’https://scrap.tantemalkah.at’,

9 }

Code 5: The Index resource of the server

For this simple endpoint we only need to define a get method, which handles incoming HTTP
GET requests and just returns a dictionary, which is translated by Flaks-RESTful to a JSON

55

https://gitlab.com/jackieklaura/scrap-api-server

object. While the classes in /resources/explanation.py, /resources/files.py and /resources/is-
sues.py follow the same simple principle, only with some added application logic to handle
request parameters and retrieve the data from the database or parse the YAML files in the /re-
sources/explanations folder, the classes in /resources/scan.py and /resources/scanner.py are
of more interest, as they handle also the scan submission and the analysis of the scans. These
will be explained in more detail in the next section.

Files in the code base that have not been mentioned so far are the files in the /common folder,
which provide basic authentication and sanitization as well as a set of default responses for the
request handlers. In the /static folder resides only the scrap_api.yaml file containing the API
specification, which is linked to in the response from the Index resource. Finally the db.py file
contains all functions to read from and store to the database.

5.2.3 Scanner integration

For the scanners and the resulting scans to be accessed, the ListOfScans and the Scan re-
source classes handle GET and POST requests to the /scans and GET and DELETE requests
to the /scans/<string:id> endpoints respectively.

The method for returning a list of scan is quite succinct, also because the prototype does not
implement paging, as seen in listing 6:

1 class ListOfScans(Resource):

2 def get(self):

3 if not auth.isUser(request.headers):

4 return resp.NotAuthorized

5 items = db.queryScans(request.headers.get(’X-API-KEY’))

6 response = {

7 ’paging’: {

8 ’count’: len(items),

9 ’next’: ’’,

10 ’previous’: ’’,

11 },

12 ’items’: items

13 }

14 return response

Code 6: Method to handle a request for a list of scans (in scan.py)

Also the methods for returning a scan result and to delete it are quite succinct, as listing 7
shows:

1 class Scan(Resource):

2 def get(self, id):

3 if not auth.isUser(request.headers):

4 return resp.NotAuthorized

5 if not sanitize.isUuid(id):

6 return resp.InvalidUuid

7 response = db.getScan(id, request.headers.get(’X-API-KEY’))

56

8 if not response:

9 return resp.ScanNotFound

10 return response

11

12 def delete(self, id):

13 if not auth.isUser(request.headers):

14 return resp.NotAuthorized

15 if not sanitize.isUuid(id):

16 return resp.InvalidUuid

17 if request.headers.get(’X-API-USER’) == current_app.config[’PUBLICUSER’]

\

18 and not current_app.config[’PUBLICDELETE’]:

19 return resp.NoPublicDelete

20 if not db.deleteScan(id, request.headers.get(’X-API-KEY’)):

21 return resp.ScanNotFound

22 return None, 204

Code 7: Methods to handle requests for a single scan and to delete it (in scan.py)

Most of the logic is needed for the post method of the ListOfScans resource, as it handles
the upload of new files and archives which should be scanned, and then initiates the scan. The
following listing 8 shows the handling of the request parameters and the processing of the
uploaded files:

1 def post(self):

2 if not auth.isUser(request.headers):

3 return resp.NotAuthorized

4 if not re.match(r’^multipart\/form-data(; boundary=[-]*[0-9]*)?$’,

str(request.content_type)):

5 return resp.UseMultipart

6 if not ’file’ in request.files:

7 return resp.FileNeeded

8 file = request.files[’file’]

9 if not ’.’ in file.filename:

10 return resp.WrongFileType

11 suffix = file.filename.rsplit(’.’, 1)[1]

12 if not suffix in current_app.config[’UPLOADS’][’allowed_types’]:

13 return resp.WrongFileType

14 file.seek(0, os.SEEK_END)

15 filesize = file.tell()

16 file.seek(0, os.SEEK_SET)

17 if request.headers.get(’X-API-KEY’) == current_app.config[’PUBLICUSER’] \

18 and filesize > current_app.config[’UPLOADS’][’public_size_limit’]:

19 return resp.FileTooBig

20 if filesize == 0:

21 return resp.NoEmptyFiles

22

23 # after this first validation we store the file in a temporary folder

24 # to do further checks on the file/archive

25 dn_temp = os.path.join(

57

26 current_app.config[’UPLOADS’][’temp_folder’],

27 str(uuid.uuid1()) # if someone else submits the same filename while

still processing this one

28)

29 fn_temp = secure_filename(file.filename)

30 os.mkdir(dn_temp)

31 file.save(os.path.join(dn_temp, fn_temp))

32

33 # if it is not a single file, but a tar archive we have to check for

34 # potential path traversals

35 if suffix == ’tgz’:

36 archive = tarfile.open(os.path.join(dn_temp, fn_temp), ’r:gz’)

37 contains_php = False

38 for f in archive.getmembers():

39 if f.name.startswith((’../’, ’./’, ’/’)):

40 return resp.InvalidArchiveContent

41 if f.name.endswith(’.php’):

42 contains_php = True

43 if not contains_php:

44 return resp.InvalidArchiveContent

Code 8: First part of the ListOfScans.post method (in scan.py), validating the request data and the
uploaded files

In the above code section there is nothing particularly noteworthy except that thorough input
validation is done, including the handling of the gzipped tar archives. This prototype version
only specifically allows for .php and .tgz files to be uploaded, although the configuration files
suggests that the allowed file types can be easily extended. A production implementation would
certainly have to provide for that and should probably move the code for the file upload handling
in to a file in the /common folder.

Before the actual scan can be started the next section in the post method, as provided in
listing 9, generates an initial scan entry in the database to retrieve its UUID, and only then
moves the uploaded files to their final destination and populates the files table in the database
with corresponding entries:

1 # ok, we are good. we can store/extract the files to their final

2 # location. but need to generate the new scan in the DB first,

3 # to get its UUID, which we use for the storage path

4 scan = db.submitScan(request.headers.get(’X-API-KEY’))

5 scan_uuid = scan[’id’]

6 # TODO for post-prototype stage:

7 # implement multithreaded version; the response could be returned now

8 # while the file indexing and the acutal scans can be started independently

9 # to update the scan (and its progress) in the DB

10 dn_final = os.path.join(current_app.config[’UPLOADS’][’folder’], scan_uuid)

11 os.mkdir(dn_final)

12 if suffix == ’php’:

13 os.rename(os.path.join(dn_temp, fn_temp), os.path.join(dn_final, fn_temp))

14 elif suffix == ’tgz’:

58

15 archive.extractall(dn_final)

16

17 # cleaning up the temporary folder

18 if suffix == ’tgz’:

19 os.remove(os.path.join(dn_temp, fn_temp))

20 os.rmdir(dn_temp)

21

22 if not db.populateFiles(scan_uuid):

23 return resp.InternalServerError

Code 9: Second part of the ListOfScans.post method (in scan.py), storing the uploaded files and
populating the database files table

Only now, that the files reside in a folder named with the scans UUID in the configured
upload folder (/uploads by default), the actual scans can be started and the results returned to
the client. This is handled by the third and final part of the post method, as shown in listing 10:

1 issues = []

2 if request.form.get(’scanner’):

3 if request.form[’scanner’] == ’yara’:

4 scanners = [scanner.YARAScanner()]

5 elif request.form[’scanner’] == ’phpcs’:

6 scanners = [scanner.PHP_CodeSniffer()]

7 else:

8 return resp.InvalidScanner

9 else:

10 scanners = [scanner.YARAScanner(), scanner.PHP_CodeSniffer()]

11 for s in scanners:

12 s.scan_folder(dn_final)

13 issues.extend(s.issues)

14 s.submit_to_db(scan_uuid)

15

16 files = db.get_file_count(scan_uuid)

17 db.update_scan(scan_uuid, stage=’done’, percentage=100, \

18 issuesFound=len(issues), files=files, analysed=’now’)

19 response = db.getScan(scan_uuid, request.headers.get(’X-API-KEY’))

20 if request.form.get(’withIssues’) and request.form[’withIssues’] == ’true’:

21 response[’issues’] = issues

22 return response

Code 10: Third part of the ListOfScans.post method (in scan.py), starting the analysis and storing
and returning its results

Here we see another specificity of the prototypical character of this implementation: the lines
2 to 10 in the above listing assume that that there are only two specific scanner classes. If
a new scanner class is added, this code also would have to be changed. In a productive
implementation this should be refactored so that the only changes needed after a new scanner
class is added is in the configuration file.

The actual scans are then started in the for loop in lines 11 to 14. This way we can either
use only one or both (or in a productive setup many) scanners to analyse the uploaded files. All

59

found issues are accumulated in the issues list, which are then returned with the response, if
the client requested it.

Herein lies another prototype specificity: the API is designed in a way that it allows for asyn-
chronous scans, that can be initiated by the POST to the /scans endpoint, and then retrieved
independently by a GET to the /scans/<string:id> endpoint, tracking the progress of the
actual scan. This should certainly be implemented in a scalable productive system, as scans
might take longer depending on the number of available scanners, the submitted code bases
and the request rates to the server. This prototype version nevertheless allows for a differ-
ent agents/users to initiate the scan and then retrieve them asynchronously with the provided
UUID. This would represent a workflow where a student submits their exercise code to some
existing submission tool, which in turn submits the code to the SCRAP server and then returns,
among other direct feedback, a link to the SCRAP scan with which they can investigate the
found issues themselves.

Now, that we saw how the scan is initiated, let us take a look at the final and central ingredient:
the scanner classes in the /resources/scanner.py file.

Listing 11 displays the very succinct ListOfScanners resource class, which only returns
the information about available scanners, when the /scanners endpoint of the API is re-
quested. This is followed by the definition of the Scanner class, which is the parent class
that every new scanner wrapper class has to be derived from:

1 from flask_restful import Resource

2 from flask import g, current_app

3 import db

4 import yara

5 import json

6 import os

7 import subprocess

8 from subprocess import PIPE

9

10 class ListOfScanners(Resource):

11 def get(self):

12 response = []

13 for scanner in current_app.config[’SCANNERS’]:

14 response.append(scanner.getMeta())

15 return response

16

17 class Scanner():

18 def __init__(self, name, slug=None, version=None, uri=None, comment=None):

19 self.name = name

20 self.slug = slug

21 self.version = version

22 self.uri = uri

23 self.comment = comment

24 self.issues = []

25

26 def __repr__(self):

60

27 return ’<Scanner ’ + self.slug + ’ ("’ + self.name + ’")’

28

29 def getMeta(self):

30 return {

31 ’name’: self.name,

32 ’slug’: self.slug,

33 ’version’: self.version,

34 ’uri’ : self.uri,

35 ’comment’: self.comment,

36 }

37

38 def submit_to_db(self, uuid):

39 db.submit_issues(uuid, self.issues)

Code 11: ListOfScanners and Scanner classes (in scanners.py)

The Scanner class does some initialisation of the information that is used in the
ListOfScanners request handler. It also provides the submit_issues method, which only
in turn calls the same named function in the db module. This in turn guarantees that the post

method in the handler for the POST request on the list of scans, that was presented above, can
access the list of issues that will has to be filled by the actual scanner wrapper classes, which
are derived from this Scanner class. It also masks the access to the database, so the only
thing a derived scanner wrapper class has to do, besides calling the actual scanner programs,
is to fill the self.issues list with all found issues.

Now lets take a look at the first of the two available scanner wrappers classes, that facilitate
the scan of an uploaded file or archive content with the corresponding scanner, which have
to be set up accordingly. PHP_CodeSniffer was set up as described in the static analysers
subsection 5.3.2 of the evaluation section 5.3, only that it was not set up in a users home
directory but under the /opt/scrap/scanners directory. Listing 12 shows the PHP_CodeSniffer
wrapper class, that will facilitate it within the Flask web service:

1 class PHP_CodeSniffer(Scanner):

2 def __init__(self):

3 super().__init__(

4 name=’PHP_CodeSniffer’,

5 slug=’phpcs’,

6 version=’3.5.4’,

7 uri=’https://github.com/squizlabs/PHP_CodeSniffer’,

8 comment=’Using the [phpcs-security-audit

v2](https://github.com/FloeDesignTechnologies/phpcs-security-audit)’,

9)

10 self.cli_pattern=’php /opt/scrap/scanners/phpcs/phpcs.phar ’ +\

11 ’--standard=/opt/scrap/scanners/phpcs-sa/Security ’ +\

12 ’-s --report=json %s’

13

14 def scan_folder(self, folder):

15 self.issues = []

16 p = subprocess.run([

61

17 ’php’, ’/opt/scrap/scanners/phpcs/phpcs.phar’,

18 ’--standard=/opt/scrap/scanners/phpcs-sa/Security’,

19 ’-s’, ’--report=json’, folder

20], stdout=PIPE, stderr=PIPE)

21 findings = json.loads(p.stdout)

22

23 for file, finding in findings[’files’].items():

24 path = file.rsplit(folder, 1)[1]

25 if path[0] == ’/’:

26 path = path[1:]

27 for issue in finding[’messages’]:

28 self.issues.append({

29 ’source’: {

30 ’scanner’: self.slug,

31 ’rule’: issue[’source’],

32 ’info’: self.uri,

33 ’cli’: self.cli_pattern.replace(’%s’, path)

34 },

35 ’type’: issue[’source’],

36 ’explanation’: issue[’message’],

37 ’affectedFiles’: [

38 {

39 ’path’: path,

40 ’lines’: [

41 {

42 ’num’: issue[’line’],

43 ’characters’: {

44 ’from’: issue[’column’]

45 },

46 ’text’: ’’,

47 ’description’: issue[’type’] + ’ | ’ + \

48 ’severity: ’ + str(issue[’severity’])

49 }

50]

51 }

52]

53 })

54 return self.issues

Code 12: PHP_CodeSniffer scanner wrapper class (in scanners.py)

In the initialisation, only the parents constructor method is called and the scanners meta
information is set. Additionally a cli_pattern is set, which is used to provide information on
how the scan could be done manually in a similar server setup.

The only other method that is provided by the wrapper is the scan_foler method, which
starts a php subprocess that starts the actual phpcs.phar scanner and parses its JSON
output into the findings dictionary. The rest of the method consists of two nested for loops
which go through all findings and transform them into a dictionary as it is specified by the
SCRAP API specification, and then added to the issues list.

62

While the transformation might seem cumbersome, that is all the magic a scanner wrapper
class has to do. This is quite similar for the YARAScanner. As there is a Python binding for
yara, that is installed with all the other requirements we only need to set up a /opt/scrap/scan-
ners/yara/ directory, that contains the pmf.yar and whitelist.yar as well as the pmf and whitelist
folders from PHP Malware Finder, that was described in the static scanner evaluation. Addi-
tionally we should put a scrap.yar file there with content from listing 13:

1 include "pmf.yar"

2

3 rule SQLi

4 {

5 meta:

6 issue = "Your code might be vulnerable to an SQL injection"

7 reason = "The $id parameter seems to not be sanitized"

8 info = "https://scrap/description/sqli"

9

10 strings:

11 $unsanitized = /\$id\s*=\s*\$_REQUEST\[\s*[’"]id[’"]\s*\]\s*;/ nocase

12 $injection = /SELECT.*FROM.*WHERE.*=\s*’\$id’/ nocase

13

14 condition:

15 $unsanitized and $injection

16 }

Code 13: scrap.yar main rule file for the YARAScanner

This way we include the rule set that is already available from PHP Malware Finder and can
extend it with our own rules. With this setup the YARAScanner class looks like in listing 14:

1 class YARAScanner(Scanner):

2 def __init__(self):

3 super().__init__(

4 name=’YARA’,

5 slug=’yara’,

6 version=’3.7.1’,

7 uri=’https://virustotal.github.io/yara/’,

8 comment=’Including the rule set of [PHP Malware

Finder](https://github.com/jvoisin/php-malware-finder)’,

9)

10 self.cli_pattern=’yara -r -w -s -m /opt/scrap/scanners/yara/scrap.yar %s’

11 self.rules = yara.compile(filepath=’/opt/scrap/scanners/yara/scrap.yar’)

12

13 def scan_folder(self, folder):

14 self.issues = []

15 for dir in os.walk(folder):

16 for file in dir[2]:

17 matches = self.rules.match(dir[0]+’/’+file)

18 for m in matches:

19 issue = {

20 ’source’: {

63

21 ’scanner’: self.slug,

22 ’rule’: m.rule,

23 ’info’: self.uri,

24 ’cli’: self.cli_pattern.replace(’%s’,

dir[0]+’/’+file, 1)

25 },

26 ’type’: m.rule,

27 ’explanation’: ’yara.’ + m.rule,

28 ’affectedFiles’: [

29 {

30 ’path’: str(dir[0]+’/’+file)[len(folder)+1:],

31 ’lines’: [

32]

33 },

34]

35 }

36 description = ’’

37 if m.meta:

38 if ’issue’ in m.meta:

39 description += m.meta[’issue’] + ’ | ’

40 if ’reason’ in m.meta:

41 description += m.meta[’reason’] + ’ | ’

42 if ’info’ in m.meta:

43 description += ’More info at: ’ + m.meta[’info’]

44 for s in m.strings:

45 issue[’affectedFiles’][0][’lines’].append({

46 ’characters’: {

47 ’from’: s[0],

48 ’to’: s[0] + len(s[2])

49 },

50 ’text’: str(s[2]),

51 ’description’: description,

52 })

53 self.issues.append(issue)

54 return self.issues

Code 14: YARAScanner wrapper class (in scanners.py)

As we see, the concept is similar as with the PHP_CodeSniffer class, and can be repro-
duced for every other scanner wrapper class that we want to extend SCRAP to. With yara we
only have to scan every file separately to transform the results to the format specified by the
SCRAP API definition. This makes for more nestes for loops, but the principle stays the same.

The transformation done by those two scanner wrapper classes could also certainly improved
beyond a prototype stage, by providing more information and a consistent offset scheme. For
the purpose of a proof of concept the current implementation shows that there is not a lot of
effort involved in attaching more scanners to the SCRAP platform.

64

5.2.4 Web UI

The core component of the SCRAP platform is the web service that was described in the last
section. As will be highlighted in the SCRAP evaluation later, wen can fully use it from other
tools and integrate it into other systems based on its OpenAPI specification. Yet, one of the
crucial factors for the success of such a solution is how the resulting information is presented
to the end users, that is, the introductory programming students who submitted their code to
some other platform.

Therefore this project also contains a prototypical web user interface with which students can
submit separate scans on their own, provided there is a either public account set up on the web
service, or they are given an API key by their institution. Additionally the web UI can also be
used as a front end for the display of issues and explanations, so that only minimal adaptations
have to be set to integrate SCRAP into an institutions code submission system. The latter only
has to provide the student with the link to the web UI, containing the UUID of the submitted
scan and a corresponding API key, as privacy should also be respected for student’s code
submissions, despite my high regards for mutual and co-shared learning approaches (although
in a productive implementation of SCRAP there could be a sharing and discussion feature that
allows students to work through their issues collaboratively).

Due to the main importance of the web UI in terms of content presentation I will refrain from
providing code listings here. All code for the client, including information how to set it up, can
be found in the scrap-client repository on GitLab as well as its copy on the accompanying data
disc.

In this section I want just provide a brief glance over the implementation approach. This was
done with the progressive JavaScript framework Vue.js in version 2. For Vue.js there is als a
Vue CLI, which fosters rapid prototyping by providing boilerplate code and standard tooling,
including a development server, based on the popular webpack asset bundler. Then there is
also the Vuex state management library and the and the Vue Router, which make it easy to
build a consistent application state and access to the web service and to implement a URI
scheme analogous to the web service. For the asynchronous API requests the promise based
HTTP client axios was chosen and for a smooth and consistent user interface the BootstrapVue
library was used, bringing the popular and responsive front-end component library Bootstrap 4
to Vue.js in native Vue components.

The current Web UI prototype provides features to upload and list scans, tied to an API key,
and to inspect scans and all related issues. For every issue, if an according explanation was
written, three tabs are shown with information on what the vulnerability, how to fix it and further
references. This was modelled after the promising SonarQube dashboard and its display of
Security Hotspots, which is evaluated in the following section as one of the 7 static analysis
tools.

An evaluation of the SCRAP API and the web service as well as the web UI, follows in the
next section, right after the evaluation of the scanners. Corresponding screenshots of the web
UI can be found there.

65

https://gitlab.com/jackieklaura/scrap-client
https://vuejs.org/
https://cli.vuejs.org/
https://webpack.js.org/
https://vuex.vuejs.org/
https://router.vuejs.org/
https://github.com/axios/axios
https://bootstrap-vue.js.org/
https://getbootstrap.com/docs/4.4

5.3 Evaluation

The SCRAP prototype consists of three components that can be evaluated:

1. The (potential) scanners and their adaptation

2. The web service API and its implementation server

3. The web client

A major factor for the viability of the approach presented in this thesis is the availability of
good F/LOSS static analysis tools to scan PHP code and then in turn generate useful feedback
for SCRAP code submissions at the webservice. Therefore the analysis of the F/LOSS tools
presented in subsection 2.2.1 in the Platforms and Tools section (2.2) of the literature review is
of major interest.

The following subsection describes the vulnerability test data set that was used to evaluate
the different tools. The subsection thereafter provides a detailed description of the individual
tools. The last subsection in this section then evaluates the prototype implementations of the
SCRAP web service and client. Additionally the evaluation of the scanners and the description
of the test data set are also accessible in the scrap-scanner-eval repository on GitLab, and are
linked to in the project website at https://scrap.tantemalkah.at.

5.3.1 Vulnerability test data

As a data set to test the scanners, a subset of the vulnerability files of the Damn Vulnerable
Web Application (short: DVWA) by Ryan Dewhurst (Dewhurst Security, 2020) was chosen. Of
particular interested are the SQLi and XSS vulnerabilities, because these are the most likely
ones to be encountered in introductory web application programming courses. To be able to
test single PHP files as well as folders containing a collection of PHP files and/or subfolders with
PHP files, the single vulnerability files have been placed in the root of the vulnerability test data
folder, and the DVWA folders for the different vulnerability types (SQLi, blind SQLI, reflected
XSS, stored XSS and dom-based XSS) have been copied as a whole.

To consistently generate a folder with this test data set, the bash script vuln-data-copy.sh was
created and can be used to reproduce this set from a freshly unpacked DVWA download. The
script can be found in the scrap-scanner-eval repository, as well as in the attachment and the
accompanying data disc’s scrap-scanner-eval directory.

The choice to use a subset of the DVWA was made because it nicely features examples
for common web application security vulnerabilities, and has especially good coverage of SQL
injection and XSS vulnerabilites, which are the most likely and early ones to come up in intro-
ductory web application programming courses. An additional factor for this choice also was my
previous and good experience with it. Beyond that it was also mentioned and used in literature
found in my review (Sahu & Tomar, 2017).

66

https://gitlab.com/jackieklaura/scrap-scanner-eval
https://scrap.tantemalkah.at
http://www.dvwa.co.uk
http://www.dvwa.co.uk
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/vuln-data-copy.sh
https://gitlab.com/jackieklaura/scrap-scanner-eval

While this set is a good and pragmatic choice for the context of this master thesis, future
research should apply other approaches and data sets. Examples for such are presented by
(Schuckert et al., 2017) and (Stivalet & Fong, 2016). Also a mixture of different categories of
sources could be applied, as presented by (Sahu & Tomar, 2017), who use, among others, the
Damn Vulnerable Web Application and OWASP Mutillidae 2.

5.3.2 Static analysers

As noted above, the available F/LOSS tools found through literature review and web searches
is described in section 2.2.1. As the resulting list of tools is too long to evaluate every single
tool in detail, and as many of those tools are not maintained anymore, out of the list of 19 tools
only 7 have been chosen for a deeper evaluation. For all of them there is a separate folder in
the scrap-scanner-eval repository and the corresponding folder on the accompanying data disc,
containing a notes.md file, which describes:

1. The setup and usage of the tool

2. A general assesssment

3. Its viablity in regard to a test data set

4. Remarks on the adaptation potential for SCRAP

Most of those folders also include screenshots of the tool’s general usage and its application
to the test data. Some folders additionally contain small exemplary scripts or rules to highlight
the potential for the tool’s adaptation in SCRAP.

The following subsections describe the evaluation of each of the 7 tools in detail, followed by a
general résumé. For a consistent setup scenario, that can be utilised in the SCRAP prototypes
all tools have been placed in a scanner directory, so that the same setup can be put into a
/opt/scrap/scanners directory in a productive setup. All evaluations were done on Debian 10
minmal server system, that was sandboxed as a kvm/libvirt virtualised system on a Ubuntu
18.04 notebook. The scanner directory for the evaluation was put in the home directory of a
non-privileged user account. This is the reference point for mentions of this directory in the
following subsections.

In the following sections not all screenshots that are available in the repository and on the
accompanying data disc will be depicted, to save space for this paper (also) based medium.
Nevertheless, for all mentioned screenshots - also those that are directly depicted here - the
filename is provided and links to the picture file in the scrap-scanner-eval repository.

graudit

The setup and usage of this tool are quite easy, and well documented in its GitHub repository:
https://github.com/wireghoul/graudit.

67

https://gitlab.com/jackieklaura/scrap-scanner-eval
https://gitlab.com/jackieklaura/scrap-scanner-eval
https://github.com/wireghoul/graudit

For non-permanent use, we just need to clone the repo and run graudit from the repo’s root
dir. The screenshot graudit01.png shows the cloned repo root content and a call of graudit
without any arguments, providing a usage description of the tool.

The easiest use is to call graudit just with one argument, the path with to a single file, as
the graudit02.png hows, which is also depicted in figure 7. The same approach works not only
for single files but also for a directory containing more files and directories.

Figure 7: Simplest use of graudit on a single file

The signature/rule files are also easy to find and to clone/modify. All out-of-the-box rule-
“databases” are found in the signatures folder, as the screenshot graudit03.png shows. The
signature databases are just plain text files with one regular expression per line. Screenshot
graudit04.png, depicted in figure 8 shows the example of potential SQL injections.

Figure 8: The graudit rules for SQL injections

A general assessment of graudit is, that it is a simple regular-expression based grepper
tool that seems to primarily support code auditors to find code segments which need careful
analysis.

Applied to the test data it only found the SQL injection vulnerabilities. But it does not provide
any information on what type of error/vulnerability/dodgy code it found and why, that is, based
on which rules, as screenshot graudit05.png shows, also depicted in figure 9.

A full scan of the whole DVWA source generates more findings, but they are also quite un-
specific. A quick and simple analysis with an out-of-the-box set up is not quite feasible for our
purposes. But the tool can be easily extended with other rule databases. By using only specific
databases on specific files provides the most value.

68

https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/graudit/graudit01.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/graudit/graudit02.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/graudit/graudit03.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/graudit/graudit04.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/graudit/graudit04.png

Figure 9: Results for graudit scans of 4 subfolders

For the adaptation in SCRAP a wrapper script would need to scan all individual files of the
submission consecutively with each specific rule database. This way, for every code line found
by graudit, the wrapper can produce additional information on which ruleset is responsible
for this hit. In that way also information on specific SQLi, XSS and other vulnerability categories
can be attached to the found code line.

phan

For the setup and usage of phan there are several options. For the use on a project basis, the
installation through a composer dependency seems to be the most viable one. But for a quick
evaluation, we can also just load the current phan.phar file from its release page, in this case
version 2.5.0, and put it into our scanners collection under scanners/phan.

Phan needs php-ast in version 1.0.1 or higher as a dependency, but the Debian repository
only provides it in version 0.1.6. The is easily solved with the three commands in listing 15.

1 sudo apt install php-pear

2 sudo apt install php-dev

3 sudo pecl install ast-1.0.5

Code 15: Setting up php–ast for phan

After that we need to add extension=ast.so to the /etc/php/7.3/cli/php.ini. Now phan can
be run, listing available options by calling php ~/scanners/phan/phan.phar --help, as
seen in the screenshot phan01.png.

It is also quite easy to run out-of-the box tests on single files or a directory’s content as
screenshot phan02.png shows, which is also depicted in figure 10.

For more complex setups there are many options to configure phan either via com-
mand line arguments or through a config file. The project documentation also suggests
to start with strengthening ones analysis incrementally by starting with a relaxed analysis
first and then increase the amount of things phan looks for in consecutive analysis runs
(github.com/phan/phan, 2020).

69

https://github.com/phan/phan/releases
https://github.com/phan/phan/releases/download/2.5.0/phan.phar.asc
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/phan/phan01.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/phan/phan02.png

Figure 10: Simple call of phan with results

As a general assessment phan looks like a well developed static analyser for overall PHP
code quality. It also has plugins/extensions for the editors vim, emacs and VS Code, which
could make it quite useful for integration into introductory programming education. The plug-
in/extension system is well documented and one could write security-specific plugins, although
it is a lot less simple than with e.g. graudit, where you just have to add simple matching rules.
In terms of security there is no specific focus.

Applied to the test data, none of the security issues were found. But it found a lot of general
issues that are important for code quality, and which could not have been found by a simple
grepper like graudit.

As an example, scanning the whole folder containing the SQLi related code templates of the
DVWA, 25 of the 26 found issues are due to use of undeclared functions or variables, which
is only the case because we scan a folder within the whole application, as show in screenshot
phan03.png.

If we scan the whole DVWA folder and filter for only those issues coming from the vulnerabil-
ities/sqli/ folder, the hit count is reduced to 8, with 7 still coming from undeclared variables, as
screenshot phan04.png shows, which is depicted in figure 11.

Figure 11: Scanning the DVWA SQLi vulnerability folder with phan

A definite advantage of phan compared to graudit is that it provides information about what
it found. This helps to look for specific issues and provides an overall overview of the state of
a whole application. Screenshot phan05.png for example is shows the first screen of a count
of found issues for the whole DVWA, where the first three issue categories are PhanUnde-
claredProperty, PhanUndeclaredMethod and PhanUndeclaredClassPropert with 170, 113 and
77 hits respectively.

In contrast to simple regex based grepping, phan does not just do simple pattern matching
but works directly on the abstract syntax tree of the scanned PHP code. In that sense it is a
true static code analyser, whereas graudit is just a pseudo analyser.

70

https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/phan/phan03.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/phan/phan04.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/phan/phan05.png

For the adaptation in SCRAP phan already provides categories and minimal explanations
off the found issues. This can be used by a wrapper script. Unfortunately no security specific
issues have been found in the test data. Therefore at least one plug-in would have to be
developed for phan to focus on security issues.

PHP Malware Finder

The setup and usage for PHP Malware Finder, or short PMF, are quite simple. PMF works
by applying YARA rules, so we need the yara package, which can be simply installed with
sudo apt install yara on any Debian base system. Then we just clone the PMF repos-
itory and, to be consistent in our scanner usage, make a link called pmf to the php-malware-
finder in the subdirectory, as shown in listing 16.

1 git clone https://github.com/jvoisin/php-malware-finder.git

2 ln -s php-malware-finder/php-malware-finder pmf

Code 16: Setting up PHP Malware Finder

Now we can scan our test data right away with the command in listing 17.

1 ~/scanners/pmf/phpmalwarefinder ~/scrap-vuln-data

Code 17: Simple scan of whole test data set with PMF

As a general assessment, PHP Malware Finder is a good tool to scan a web host for
deployed sites that use PHP code, in order to find malware like web shells and other dodgy or
potentially obfuscated code. It relies on a pseudo-static analysis based on a set of YARA rules
and is therefore rather easy to extend. Also the deployment is quite easy.

Applied to the test data, pmf did not find any of the vulnerabilites and it did find only mi-
nor other issues. Even applied to the whole vulnerable test data folder of the DVWA, only 4
general issues have been found, two coming from explanations with from links to a page on
pentestmonkey.net, as screenshot pmf01.png shows.

To its defense it has to be mentioned, that its intention is not to strictly analyse code but to
find known patterns for dodgy and potentially vulnerable code, and most of all to find known
malware signatures in the analysed code base.

For the adaptation in SCRAP, not only a wrapper script would be needed but also a whole
set of YARA rules have to be developed to find vulnerable code that is not detected by the
provided YARA rule file in PMF.

A simple rule for exactly the issue in the sqli_low.php file of the vulnerable test data would be
the one in listing 18.

1 rule SQLi

2 {

3 strings:

4 $unsanitized = /\$id\s*=\s*\$_REQUEST\[\s*[’"]id[’"]\s*\]\s*;/ nocase

5 $injection = /SELECT.*FROM.*WHERE.*=\s*’\$id’/ nocase

71

https://github.com/jvoisin/php-malware-finder.git
https://github.com/jvoisin/php-malware-finder.git
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/PMF/pmf01.png

6

7 condition:

8 $unsanitized and $injection

9 }

Code 18: A simple YARA rule to find the vulnerability in sqli_low.php

Put into our own scrap.yar file we can use the command in listing 19 to find the vulnerability
with PMF :

1 ~/scanners/pmf/phpmalwarefinder -v -c scrap.yar scrap-vuln-data/sqli_low.php

Code 19: PMF scan with custon YARA rule

But as PMF is basically just a wrapper for yara, bundled with a set of YARA rules, we
can achieve an even better result (without the warning about unbounded .* regexp filters) by
directly calling yara, which listing 20 shows:

1 yara -w -s scrap.yar scrap-vuln-data/sqli_low.php

Code 20: Calling yara directly with custom rule

This is demonstrated in screenshot pmf02.png, which is also depicted in figure 12. In the
screenshot we see a tiled bash view (using tmux), with the uppermost window showing the
vulnerable PHP code that gets analysed, the middel part showing our own YARA rule file, and
the bottom window showing the output of PMF both without and with our own rule as well as
the output of calling yara directly using our own rule.

The direct use of yara also entails the advantage that we can add meta information to our
rule, which then can be output by adding the -m option to the call of yara as it was depicted in
figure 12. The annotated YARA rule then looks as in listing 21.

1 rule SQLi

2 {

3 meta:

4 issue = "Your code might by vulnerable to an SQL injection"

5 reason = "The $id parameter seems to not be sanitized"

6 info = "https://scrap/description/sqli"

7

8 strings:

9 $unsanitized = /\$id\s*=\s*\$_REQUEST\[\s*[’"]id[’"]\s*\]\s*;/ nocase

10 $injection = /SELECT.*FROM.*WHERE.*=\s*’\$id’/ nocase

11

12 condition:

13 $unsanitized and $injection

14 }

Code 21: Annotated YARA rule to find the vulnerability in sqli_low.php

The screenshot pmf03.png, depicted in figure 13 shows the annotated output of yara with
our basic rule for finding a specific SQL injection.

72

https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/PMF/pmf02.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/PMF/pmf03.png

Figure 12: Using yara to do PMF’s work with our own rule

Figure 13: Output of yara, when using our annotated rule on the sqli_low.php file

73

This all shows that it does not make sense to adapt PMF directly. If anything, we could
potentially use some rules out of its YARA rule set and extend it with our own YARA rules. This
then would be a viable option, when multiple scanners are used, because this approach makes
it rather easy to add new rules for known issues.

PHPMD

For setup and usage PHPMD can be used directly from a .phar package released by the
project. It comes with different sets of rules and one has to choose which ruleset to use for the
analysis, while a mixture of different sets and custom ruleset files can be chosen.

To make it usable in our scanner test array, we just download the phar package into a new
phpmd subfolder as done in listing 22:

1 mkdir ~/scanners/phpmd && cd ~/scanners/phpmd

2 wget https://phpmd.org/static/latest/phpmd.phar

Code 22: The simple setup of PHPMD

In its simplest form we can call it like in listing 23, using only the cleancode ruleset and
printing the results as a json object:

1 php ~/scanners/phpmd/phpmd.phar ~/scrap-vuln-data json cleancode

Code 23: Simple scan of whole test data set with PHPMD

As a general assessment PHPMD is a good general purpose tool for static analysis of PHP
code bases, when it comes to improving code quality. It comes with several rule sets integrated
and has good documentation for how to use them and how to create custom rule sets based on
the existing detection functions. It does not seem to have any specific focus on code security
more than making sure that code is functional, readable and bug-free (which is in itself already
an important aspect of good coding practice).

Applied to the test data out-of-the-box, PHPMD does not provide any findings, as screen-
shot phpmd01.png shows, one first with a text output formant and then with a json output
format. To make sure that this is not due to a misconfiguration, I also scanned the whole DVWA
code base with it and got a lot of hits.

Screenshot phpmd02.png is depicted in figure 14 and shows an example search running
phpmd.phar on the DVWA/dvwa folder, filtering the json results, first to check which files
have triggered rules and how many, and secondly outputting only the last three findings from
the second file in the result.

This shows the very handy feature of providing the output in JSON format, as well as the
good annotation of the rules and their categories, as well as where it was found.

For the adaptation in SCRAP, PHPMD looks like a solid framework that could be used for its
versatile output handling. Custom rule sets could be written in order to catch vulnerable code,
and the annotation feature of the rules would fit well into a SCRAP toolchain that should finally
provide appropriate descriptions of the findings to the user.

74

https://phpmd.org/download/index.html
https://phpmd.org/download/index.html
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/PHPMD/phpmd01.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/PHPMD/phpmd02.png

Figure 14: Output of PHPMD filtered through json, when run on the DVWA/dvwa folder

Nevertheless, one would have to also develop additional detector functions that could be
used in those rule sets, as it seems that not many vulnerabilities could be described based on
the existing rules. The decision whether to go down that road depends on whether a scanner
with better out-of-the-box results can be found and adopted for SCRAP.

PHPStan

For setup and usage of PHPStan the PHP dependency manager composer seems to be the
most straight-forward option, as we do not have to track all dependencies and composer itself
is packaged in the Debian repository. This makes the setup as brief as in listing 24

1 sudo apt install composer

2 mkdir ~/scanners/phpstan && cd ~/scanners/phpstan

3 composer require --dev phpstan/phpstan

4 ln -s vendor/phpstan/phpstan/phpstan

Code 24: Setup of PHPStan

A first execution without any arguments already provides a a well defined user interface, as
seen in screenshots phpstan01.png and phpstan02.png.

In our setup a single file or a directory can be scanned with the commands ins listing 25:

1 ~/scanners/phpstan/phpstan analyse ~/scrap-vuln-data/sqli_low.php

2 ~/scanners/phpstan/phpstan analyse ~/scrap-vuln-data/sqli/

Code 25: Scanning a file and directory with PHPStan

75

https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/PHPStan/phpstan01.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/PHPStan/phpstan02.png

While a lot of configuration and customization of scans can be applied through a php-
stan.neon file, one important option that can be set directly from the command line is the rule
level (currently between 0 for loose and 9 for strict). So if we want to catch most of the issues
we would apply a level 9 or max to the search, as in listing 26:

1 ~/scanners/phpstan/phpstan analyse --level=max ~/scrap-vuln-data/sqli_low.php

2 ~/scanners/phpstan/phpstan analyse --level=max ~/scrap-vuln-data/sqli/

Code 26: Scanning a file and directory with PHPStan with the maximum analysis level

A comparison of the single file scan for sql_low.php with the default level 0 and the max level,
can be seen in screenshot phpstan03.png, also depicted in figure 15.

Figure 15: Two PHPStan scans of a single file with different analysis levels

As a general assessment it can be stated that the main aim of PHPStan was to reduce the
necessity of writing tests, as its author wrote in 2016 in a blog post on medium.com (Mirtes,
2016).

When we look at the initial checks, it becomes clear that PHPStan was made for larger PHP
projects applying current web application software engineering paradigms and PHP practices,
like e.g. using strict typing features introduced in PHP 7. PHPStan seems to be under constant
development, and since the mentioned blog post, a lot has happened. This makes it a promising
framework for static analysis of PHP code bases, although it aims at general purpose quality
of code analysis and does not have an explicit focus on secure code. But the development
process seems solid and very transparent (see the author’s other medium.com blog posts),
which would provide a good opportunity to collaborate and extend the project with specific
vulnerability analyses.

76

https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/PHPStan/phpstan03.png
https://medium.com/@ondrejmirtes/phpstan-2939cd0ad0e3
https://medium.com/@ondrejmirtes

PHPStan already has several framework-specific extensions, e.g. for Doctrine, PHPUnit,
Symfony, and a lot more. Additionally there are unofficial extensions for e.g. Laravel, Dru-
pal, WordPress, TYPO3, and many more. The project also has its own online playground at
phpstan.org, which helps new and interested users to test out things first.

Aside from the technical aspects of the project, it is also very interesting to look at an April
2018 post (Mirtes, 2018a) and a December 2018 post (Mirtes, 2018b) from PHPStan’s author
on medium.com, outlining the problem with monetization and the available time to develop the
project as F/LOSS. This points to an issue that probably many of the other projects featured in
the literature review and the listing of F/LOSS PHP static analysers in section 2.2.1 had, and it
might be also the reason why there are a lot of security-focused scanners out there, but many
of them are not maintained any more.

When applied to the test data all tests have been run with the --level=max option, which
produced around 50% more errors than with the default level of 0. Nevertheless no single
vulnerability was found and most of the errors originated from references to DVWA functions
and global variables not defined in the vulnerability test data.

For the adaptation in SCRAP, from a framework point of view, PHPStan could be a viable
option, if security analysis can be integrated at some point. As already highlighted above, the
CLI is well-designed, and also json and other output options are available, as seen in screenshot
phpstan04.png, which is also depicted in figure 16.

Figure 16: PHPStan results in JSON notation

The online playground would provide SCRAP users an already available platform to test
their code pieces individually outside SCRAP, and adopt a quality- and security-based coding

77

https://phpstan.org/
https://phpstan.org/
https://medium.com/@ondrejmirtes/looking-for-sponsors-of-the-next-major-phpstan-release-73204cce0666
https://medium.com/@ondrejmirtes/looking-for-sponsors-of-the-next-major-phpstan-release-73204cce0666
https://medium.com/@ondrejmirtes/next-chapter-in-phpstan-saga-3bfd7ffdb81d
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/PHPStan/phpstan04.png

practice for their future work.

PHP_CodeSniffer

For setup and usage of PHP_CodeSniffer, we can also use composer, which was already
installed for the setup of PHPStan. Additionally, PHP_CodeSniffer is also released as phar files
and therefore quite easy to set up for an evaluative usage, as shown in listing 27:

1 mkdir ~/scanners/phpcs && cd ~/scanners/phpcs

2 wget https://squizlabs.github.io/PHP_CodeSniffer/phpcs.phar

Code 27: Setup of PHP_CodeSniffer

Once set up this way, we can use the commands in listing 28 to get some usage information
and scan a single file with out-of-the-box settings:

1 php ~/scanners/phpcs/phpcs.phar -h

2 php ~/scanners/phpcs/phpcs.phar ~/scrap-vuln-data/sqli_low.php

Code 28: Simple usage of PHP_CodeSniffer

Screenshot phpcs02.png shows the standard output, which is based on applying the PEAR
Coding Standard.

With phpcs-security-audit v2 there is a set of security-specific rules for PHP_CodeSniffer
available, so we want to do our tests on this basis. Therefore we clone the phpcs-security-audit
v2 repo to our scanners directory, and create a shorter link for brevity, as shown in listing 29:

1 cd ~/scanners

2 git clone https://github.com/FloeDesignTechnologies/phpcs-security-audit.git

3 ln -s phpcs-security-audit phpcs-sa

Code 29: Setup of the phpcs–security–audit v2

Now we can use its Security standard for the same scan as above, modifying the command
as in listing 30:

1 php ~/scanners/phpcs/phpcs.phar --standard=~/scanners/phpcs-sa/Security

~/scrap-vuln-data/sqli_low.php

Code 30: Using PHP_CodeSniffer with the phpcs–security–audit v2 standard

The results of the above command are shown in screenshot phpcs03.png and depicted in
figure 17).

As a general assessment PHP_CodeSniffer itself is a well developed and mature framework
for general purpose code quality analysis, comparable to PHPStan, but with even more con-
figurability and different coding standards as analytical reference to choose from, all on board.
Interestingly, both projects have 179 contributors listed on GitHub (checked on 2020-03-05), but
while PHPStan started in 2015, PHP_CodeSniffer is already around since 2006.

78

https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/PHP_CodeSniffer/phpcs02.png
https://pear.php.net/manual/en/standards.php
https://pear.php.net/manual/en/standards.php
https://github.com/FloeDesignTechnologies/phpcs-security-audit
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/PHP_CodeSniffer/phpcs03.png

Figure 17: Result of a simple PHP_CodeSniffer scan with the phpcs-security-audit v2 standard

The maturity of the project is also visible in good documentation, a clear and transparent
version numbering and release scheme and good extendability, especially when it comes to
creating own coding standards.

Besides its use for static analysis it also comes with an additional script for automatic cor-
rection of coding standard violations. The best general outline on what it is and its intent can
maybe taken directly from its Documentation page:

“PHP_CodeSniffer is a set of two PHP scripts; the main phpcs script that tokenizes
PHP, JavaScript and CSS files to detect violations of a defined coding standard,
and a second phpcbf script to automatically correct coding standard violations.
PHP_CodeSniffer is an essential development tool that ensures your code remains
clean and consistent.

A coding standard in PHP_CodeSniffer is a collection of sniff files. Each sniff file
checks one part of the coding standard only. Multiple coding standards can be used
within PHP_CodeSniffer so that the one installation can be used across multiple
projects. The default coding standard used by PHP_CodeSniffer is the PEAR coding
standard.” (github.com/squizlabs/PHP_CodeSniffer, 2016)

Applied to the test data, when we run PHP_CodeSniffer out-of-the-box (without the phpcs-
security-audit v2) rule set, the results are similarly generic like with PHPStan or the other gen-
eral purpose static analysers. Yet, the structure of the rule sets as “Coding Standards” and the
availability of different on-board standards gives it a slightly better feeling for how to customize
and how to trace and explain bad code.

But when we apply the phpcs-security-audit v2 coding standard on our test data we already
get a good coverage of our vulnerabilities, without too many false positives or issues relating to
other coding standards.

The tool does not tell which specific vulnerability is found, but points to the exact location
where the vulnerability hits the application, as seen in screenshot phpcs04.png, where we
compare the analysis for an SQL injection and a stored XSS vulnerability. Both resulted in the
same issue found, which is acutally quite accurate, because in many cases stored XSS attacks
build on available SQL injection vulnerabilities. Nevertheless, the rule set can certainly be
improved to spot code pieces where specifically a XSS attack could happen due to unsanitized
script output.

79

https://github.com/squizlabs/PHP_CodeSniffer/wiki
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/PHP_CodeSniffer/phpcs04.png

For the adaptation in SCRAP PHP_CodeSniffer with the phpcs-security-audit v2 rule set
seems to be the most promising candidate for adaptation in SCRAP. Also there is good doc-
umentation on how to write ones own coding standards, including the XML rule sets and the
PHP code for the individual Sniffs used in those rule sets.

There are also a lot of options described on the Advanced Usage section of the documenta-
tion, which can be used to limit analysis to specific sniffs and to filter warnings and errors based
on severity. And there is also a well documented and broad range of Reporting options.

Additionally, we might not only get information about the specific sniffs that found a vulnera-
bility, but also output this in JSON format, as screenshot phpcs05.png shows, which is depicted
in figure 18.

Figure 18: Differnt output options of PHP_CodeSniffer

SonarQube

The setup and usage of SonarQube is trivial as in all the other scanners tested so far, as it is
not a single tool but its own platform facilitating a range of tools and interfaces.

The SonarQube Server can be installed manually from a ZIP archive, but there is also a
docker container available, which is especially helpful for evaluative purposes. For a produc-
tive setup the manual installation might make more sense, depending on available hardware

80

https://github.com/squizlabs/PHP_CodeSniffer/wiki/Advanced-Usage
https://github.com/squizlabs/PHP_CodeSniffer/wiki/Reporting
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/PHP_CodeSniffer/phpcs05.png

resources.
After installing docker as described in the Get Docker Engine - Community for Debian article

of the Docker documentation (docker docs, 2020), the SonarQube server can be started with
the following a one-liner as in listing 31:

1 sudo docker run -d --name sonarqube -p 9000:9000 sonarqube

Code 31: Starting the SonarQube server with docker

After the start of the server the web interface is available on http://localhost:9000, or
http://scrap:9000, if the hostname is configured as in our test setup. The credentials for an
initial login can be found on the Get Started in Two Minutes Guide of the SonarQube documen-
tation (SonarQube, 2020).

To scan a code base we first have to create a project in SonarQube, where we have to choose
an API token, the language to analyse and the operating system. We then get a download
link for the scanner and some documentation on how to start a scan, as seen in screenshot
sonarqube01.png.

The scanner can be installed on any host that can communicate with the SonarQube server.
In our case it is the same host. While there is also a sonar-scanner-cli Docker image, to be
consistent in the test setup, I installed the scanner manually in the /scanners directory with the
commands in listing 32:

1 cd ~/scanners

2 wget

"https://binaries.sonarsource.com/Distribution/sonar-scanner-cli/sonar-scanner-cli-4.2.0.1873-linux.zip"

3 unzip sonar-scanner-cli-4.2.0.1873-linux.zip

4 mv sonar-scanner-4.2.0.1873-linux sonar-scanner

Code 32: Setting up the SonarQube client to scan PHP code

A first test run with our whole vulnerability test data can then be started like in listing 33:

1 scanners/sonar-scanner/bin/sonar-scanner \

2 -Dsonar.projectKey=scrap-vuln-data \

3 -Dsonar.host.url=http://scrap:9000 \

4 -Dsonar.login=839279eea43ef40185cc1f3dacd6d44146b852fb \

5 -Dsonar.sources=./scrap-vuln-data

Code 33: Scanning the test data set with SonarQube

The project dashboard on the server interface then updates automatically to highlight the
results, as seen in screenshot sonarqube02.png, which is also depicted in figure 19.

General assessment: SonarQube is its own mature platform for code analysis, covering
many languages and including advanced features. It is advertised not only as a general purpose
code quality scanning platform but also as a security focused platform.

This is highlighted especially in the newly introduced Security Hotspot reviewing workflow.
As screenshot sonarqube03a.png shows, the list of found issues provides filters for many char-
acteristics. Besides the severity of the issues, they are also classified into code smells, bugs

81

https://docs.docker.com/install/linux/docker-ce/debian/
https://docs.sonarqube.org/latest/setup/get-started-2-minutes/
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/SonarQube/sonarqube01.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/SonarQube/sonarqube02.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/SonarQube/sonarqube03a.png

Figure 19: SonarQube project dashboard right after a scan of the test data set

and vulnerabilities, and security categories can be provided based on the OWASP Top 10, the
SANS Top 25, or available data from the CWE database. Unfortunately no vulnerability was
found in the displayed project scan, which was a first evaluative scan of the whole scrap-vuln-
data directory, as explained in the setup section above.

Nevertheless some Security Hotspots could be identified, as screenshot sonarqube03b.png
shows (depicted in figure 20). For each hotspot, not only the category and the relevant code
sections are highlighted, but also the following three tabs:

1. “What’s the risk?” as shown in sonarqube03c.png

2. “Are you at risk?” as shown in sonarqube03d.png

3. “How can you fix it?” as shown in sonarqube03e.png

This points in the right direction and is in line with research on secure coding education.
Especially the UI featuring the relevant code pieces in combination with the tabs explaining the
vulnerability and potential mitigations are very promising and should be adopted not only in
educational contexts.

Applied to the test data: SonarQube is not tailored towards one-time single file analyses,
but rather to incremental analyses of a code base with a thorough project set up. Therefore the
evaluation of the test data as-is is rather cumbersome, without initial adaptation.

82

https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/SonarQube/sonarqube03b.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/SonarQube/sonarqube03c.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/SonarQube/sonarqube03d.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/SonarQube/sonarqube03e.png

Figure 20: The SonarQube dashboard showing Security Hotspots for the scanned project

83

To make it more feasible for the comparative analysis, a test script has been written in anal-
yse.sh, which can be used for temporary SonarQube project instantiation an scanning of a
single files or directories, to retrieve the results and then remove the temporary project. This is
also a proof of concept for a workflow as it could be used for SCRAP. The script can also be
found in the appendix. With it, the analysis results for the results.csv comparison table could
then be produced with the commands in listing 34:

1 scrap-eval/SonarQube/analyse.sh scrap-temp scrap-vuln-data/sqli_low.php >

sqli_low

2 scrap-eval/SonarQube/analyse.sh scrap-temp scrap-vuln-data/sqli_medium.php >

sqli_medium

3 scrap-eval/SonarQube/analyse.sh scrap-temp scrap-vuln-data/sqli_high.php >

sqli_high

4 scrap-eval/SonarQube/analyse.sh scrap-temp scrap-vuln-data/xss_r_low.php >

xss_r_low

5 scrap-eval/SonarQube/analyse.sh scrap-temp scrap-vuln-data/xss_r_medium.php >

xss_r_medium

6 scrap-eval/SonarQube/analyse.sh scrap-temp scrap-vuln-data/xss_r_high.php >

xss_r_high

7 scrap-eval/SonarQube/analyse.sh scrap-temp scrap-vuln-data/sqli > sqli

8 scrap-eval/SonarQube/analyse.sh scrap-temp scrap-vuln-data/sqli_blind >

sqli_blind

9 scrap-eval/SonarQube/analyse.sh scrap-temp scrap-vuln-data/xss_r > xss_r

10 scrap-eval/SonarQube/analyse.sh scrap-temp scrap-vuln-data/xss_s > xss_s

11 scrap-eval/SonarQube/analyse.sh scrap-temp scrap-vuln-data/xss_d > xss_d

Code 34: Scanning each test data component in a separate SonarQube scan and retrieving the
results

Further processing was done with using different jq filters to find the number of found issues,
the types, messages and full issue descriptions, as the exemplary screenshot sonarqube04.png
shows, which is also depicted in figure 21.

The issues found in these results all have been counted as unspecific hits in the results
comparison, as the SonarQube Web API does not provide any means to access the newly
featured workflow for reviewing Security Hotspots.

As the security hotspots where reviewed manually in the web interface for a project scanning
the whole scrap-vuln-data folder, some vulnerabilites could be found, but none of those that we
actually wanted to test for. A common pattern was to find e.g. a XSS vulnerability in the files
featuring an SQL injection, a DoS vulnerability in the files featuring the actual XSS, and issues
of weak cryptography in a file of the sqli_blind set, where the rand function was used to sleep
a (pseudo)random amount of seconds, as can be seen in the screenshot sonarqube05.png.
Therefore, no actual hits have been entered in the comparison table, and only those general
findings from the analysis above have been counted.

For the adaptation in SCRAP, SonarQube provides a very usable RESTful Web API, wich is
documented on the running server under the url http://scrap:9000/web_api (given our standard
setup on a host with the name scrap).

84

https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/SonarQube/analyse.sh
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/SonarQube/analyse.sh
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/SonarQube/sonarqube04.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/SonarQube/sonarqube05.png
http://scrap:9000/web_api

Figure 21: Filtering the SonarQube scan results with jq

85

Getting issues for a component (project, directory, file, ...) is therefore quite easy, given a user
token was created (alternatively, user credentials can be used with HTTP Basic authentication,
but the use of a revokable token should be the preferred method, especially if this is documented
publicly, like in the case of this thesis). A corresponding curl call combined with a jq filter is
displayed in listing 35:

1 curl -s -u bb3fbae1a08695d69d596debef18b12d54936cb6: \

2 scrap:9000/api/issues/search?componentKeys=scrap-vuln-data:scrap-vuln-data/sqli_low.php

| jq .

Code 35: Using the SonarQube web API to retrieve scan results

While very promising, the new workflow to review Security Hotspots was only introduced in
the current version 8.2, which was announced on February 26th, 2020. The Web API did not
provide any means to access the security hotspots. The next version to be released (currently
8.3.) can be tested under https://next.sonarqube.com, and a look at its Web API shows that
there are already several endpoints that are not yet available in version 8.2. Nevertheless
also in 8.3 there is not hint towards reviewing the security hotspots. Probably this feature will
be implemented in a future version yet to come. For the current evaluation for SCRAP, this
means that SonarQube is not as usable as some of the other tools tested, despite its otherwise
intriguing web interface and the Web API. But it has to be noted, that the features implemented
in the web interface point in the right direction and fulfils many of the criteria that have been
proposed by the research on secure coding education, as reviewd in chapter 2.

There is also documentation available for writing own coding rules, which would be necessary
to improve the vulnerability detection. But as the SonarQube project seems to progress steadily,
the most efficient thing would be to rather do a re-evaluation of its coming major releases, than
“duct taping” the current release to SCRAP.

Résumé

To compare all those 7 tools, every tool was tested on every of the single vulnerability files in
the root of the test data folder, as well as on the 5 folders containing all code for the mentioned
vulnerability types. This makes for 11 separate tests for each tool.

For every test all explicit findings of a vulnerability were counted as a direct hit. If one of
the vulnerabilities was found but not labelled as vulnerability / security issue, it was counted as
vulnerabilities hit as unspecific. All other findings were counted as unspecific hits.

The results of all those tests were compiled into the results.csv. table. To generate some
visualisation of the findings, the Python script makeplots.py (available also in the appendix)
was created, which facilitates pandas and matplotlib to filter the data and generate the following
5 plots:

1. scanner_comparison_overall.png

2. scanner_comparison_sqli_blind.png

86

https://www.sonarqube.org/sonarqube-8-2/
https://next.sonarqube.com
https://next.sonarqube.com/sonarqube/web_api/
https://docs.sonarqube.org/latest/extend/adding-coding-rules/
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/results.csv
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/makeplots.py
https://pandas.pydata.org/
https://matplotlib.org/
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/scanner_comparison_overall.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/scanner_comparison_sqli_blind.png

3. scanner_comparison_sqli.png

4. scanner_comparison_xss_r.png

5. scanner_comparison_xss_s.png

To come to the final résumé, lets have a look at the overall comparison as depicted in figure
22.

Figure 22: Overall comparison of scanner tools

As we can see, only PHP_CodeSniffer found specific vulnerabilities. Here we have to note,
that this is only because we use it with the phpcs-security-audit v2 rule set instead of its orig-
inal own rule set. And while phan, PHPStan and SonarQube found significantly more general
issues, most of them are due to linting issues and the fact that the test data is a subset of the
whole DVWA application, which leads to many uninitialised references.

While SonarQube is promoted also with a security focus, at least for the PHP test data set
provided here, the results are not promising. Nevertheless its framework and web user interface
seem promising and it is built to be integrated into other workflows. Yet, for an adaptation in
context of the (time-limited) SCRAP project, the resources needed for adoption outweigh the
curiosity and applicability. As stated in the closer analysis of SonarQube a future release might
prove more promising in terms of code security, as the new workflow to review Security Hotspots
was only introduced in its most recent release.

87

https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/scanner_comparison_sqli.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/scanner_comparison_xss_r.png
https://gitlab.com/jackieklaura/scrap-scanner-eval/-/blob/master/scanner_comparison_xss_s.png

Also notable is that graudit finds the SQL injection vulnerabilites, but does not provide any
information on what it actually found. After all, it is just a simple regular-expression based
grepper tool. On the other side, it is quite easy to adapt such a tool, by providing additional
regex patterns. In the case of PHP Malware Finder this lead to the realisation that in our case
we could just facilitate yara as a tool that is already made for finding vulnerabilities based on
signatures defined in YARA rules.

For those reasons the SCRAP prototype includes two exemplary adaptations of the F/LOSS
analysis tools found in this evaluation:

• PHP_CodeSniffer with the phpcs-security-audit v2

• yara with the PHP Malware Finder rule set, extended with own rules

5.3.3 SCRAP

The final SCRAP prototype consists of the web service, also called the SCRAP API server, and
the web client, or SCRAP UI. For both the source code is available on GitLab in the scrap-api-
server and scrap-client repositories, as well as in their copies on the accompanying data disc.
Additionally I plan to operate a demo server for the web service and the client, which will be
available under the project site https://scrap.tantemalkah.at.

Before evaluating the prototype system in its whole, let us take a look at at how the two
components work and look like. Figure 23 shows two instances of bash (tiled in a tmux window).
In the upper pane we see how the server gets started (in the development environment) and
how the first two requests come in. In the lower pane we see those two requests initiated by two
simple curl calls, one time to the root endpoint of the API and then to the /scanners endpoint.
The latter is filtered through jq for a more readable and marked up representation.

Figure 24 shows how the list of available explanations are retrieved, which are very few and
mostly placeholder explanations in this prototype setting. Figure 25 then shows one specific
explanation. This will be revisited later when we come to the web UI, which provides a mean-
ingful visualisation of issues and explanations. Figure 26 shows what happens when we access
a non-existing explanations. As expected we receive a 404 HTTP response from the web ser-
vice, but additionally the response body contains a meaningful JSON representation of what
this error is about. This is defined in the API specification and works similar when we try to
access non-existing scans, issues or files.

In a similar way we also get an 401 (Not Authorized) error response when we try to access
the /scans endpoint without a valid API user and API key, as shown in 27. Figure 28 then shows
a successful response when we use the public API user and API key, as they are configured in
the test environment. Whether there is a public account and how it is called is configured in the
config.py file, and a corresponding entry in the apikeys table in the database has to exist. What
we also see in those two screenshots is, that the server, when in debug mode, logs the user
names for all authenticated and unauthenticated requests to all endpoints that are covered by

88

https://gitlab.com/jackieklaura/scrap-api-server
https://gitlab.com/jackieklaura/scrap-api-server
https://gitlab.com/jackieklaura/scrap-client
https://scrap.tantemalkah.at

Figure 23: Starting the SCRAP API server and accessing its root and /scanners endpoints

Figure 24: Accessing the /explanations endpoint with curl

89

Figure 25: Accessing a single explanation with curl

Figure 26: Accessing a non-existing explanation with curl

90

the auth tag in the API specification. While the public user has no scans available yet, figure 29

shows a request from a test user who already uploaded several files to be scanned. Figure 30

shows how this user can retrieve information for a specific scan.

Figure 27: Accessing the /scans endpoint without an API key with curl

Figure 28: Accessing the /scans endpoint with the public user and API key with curl

Figure 29: Accessing the scan listing of a non-public test user with curl

In the response showing a specific scan result, we see that the scan is already completed
and that scanned project consists of 1 file. In this 1 file the scanners found 2 issues overall.
Figure 31 shows how the list of those issues is retrieved and in figure 32 we see the contents of
the first of those two issues as a response to the specific issue request.

91

Figure 30: Accessing a specific scan with curl

Figure 31: Accessing the issue listing for a specific scan

92

Figure 32: Accessing one specific issue of a scan

93

We have already seen above how an explanation can be retrieved, which might be linked to
in a specific issue. If we also want to retrieve the file’s content we can use the files and blob
sub endpoints of a specific scan, as figures 33, 34 and 35 show. This can be used by an UI to
represent the issue with rich markup of the source code and to point exactly to the positions
where the vulnerability hits the application.

Figure 33: Accessing the list of files for a specific scan

Figure 34: Accessing the meta information for a specific file in a scan

What is finally missing here is how to upload files and initiate an new scan. This is shown in
figures 36 and 37, which facilitates the Postman API client, which was used throughout the de-
velopment of the prototypes much more than the CLI command curl, as working with Postman
is less tedious and more productive. In both of those screenshots we see a POST requests to
the /scans endpoint, both times with the API user test1. The user and API key headers are set
in the Headers tab that is not shown in the screenshot. What we see is the Body tab, where
the request body is set up. In the first screenshot we send the sqli_low.php file and also set
the scanners parameter to yara and the withIssues parameter to true. This results in a scan,
that only facilitates the YARAScanner and appends the found issues right in the response of
the scan object. The same could also be accomplished with curl from the command line, with
the following command in listing 36, given one is inside the folder where the sqli_low.php file
resides.

1 curl -H "X-API-USER: test1" -H "X-API-KEY: 12345" -F scanner=yara \

2 -F withIssues=true -F file=@sqli_low.php https://127.0.0.1:5000/scans

Code 36: Uploading a file to scan with curl

94

https://www.postman.com/

Figure 35: Retrieving a specific file from a scan

In the second screenshot only the sqli_low.php file is sent, without the additional parameters.
This results in a scan facilitating all available scanners but not returning the results immediately.

What we have seen so far covers the API and the server component. When it comes to the
web UI, the most interesting part is how the issues and explanations are visualized. When
we choose a scan from our scan listing, as displayed in figure 38, we get to the Scan view of
the client, shown in figure 39. This lists the scans meta information and the number of files
scanned and issues found, just as we saw it above in the output retrieved with curl. Then a
list of issues, if any where found, is provided, where the user can click on the single issues. If
no issues have been found the user gets a nice green check mark instead of the red warning
sign, and accordingly there is no list of issues to choose from.

When an issue is selected, as in this example the SQLi issue found by yara, the correspond-
ing parts in the file are displayed with three tabs for the explanation below it. In the prototype
version the text field containing the file contents only shows the matched piece of code with its
offset in the file and an added comment on what the problem is. In a fully developed version
here the whole file contents should be displayed with rich markup and the parts matched by the
scanner rules highlighted, with more information provided in tooltips or popovers elements.

The explanation part consists of the three tabs Description, How to fix and References, which
are displayed for this specific issue in figures 40, 41 and 42 respectively. The whole view of the
issue is modelled after the Security Hotspot view in SonarQube and the suggestions found in
the literature on software security education, as presented in section 2.3.

What we did not see so far, is how the scan is deleted. What happens in the background
when the user clicks on the Delete button in the UI is similar to what figure 43 shows. Here,

95

Figure 36: POSTing a new scan with Postman, facilitating only the yara scanner and including the results

96

Figure 37: POSTing a new scan with Postman, facilitating all scanners without immediate results

Figure 38: Listing of all available scans in the SCRAP web UI

97

Figure 39: View for one specific scan in the SCRAP web UI

98

Figure 40: Description section of an explanation in the SCRAP web UI

Figure 41: How to fix section of an explanation in the SCRAP web UI

99

Figure 42: References section of an explanation in the SCRAP web UI

after a listing of available scans is requested, a simple DELETE request for a specific scan is
sent to the server, before another listing of scans is requested to check if the scan was actually
deleted.

Figure 43: Deleting a scan with curl

100

The prototype functionality that is documented here was developed in about a month of full-
time work. The workload for the different components is provided in the following list, ordered
in the chronology of the components development:

1. Scanner evaluation: 10 person days (this is not strictly part of the implementation phase,
but it was the logical first step to test the 7 scanners in detail, before implementing 2
scanners in the final prototype)

2. API design: 3 person days

3. Server implementation: 10 person days

4. Web UI implementation: 3 person days

All this is based on some prior, but not extensive experience with the Flask and Vue.js frame-
works and Python and Javascript skills of a long-time system administrator with part-time de-
veloper aspirations. This shows, that the technical side of the SCRAP approach should be rea-
sonably doable for an educational organisation with a computer science faculty. My estimate
is, that with another person month the prototype could be developed into a first fully functional
production version, which then could be integrated into existing code submission systems and
tested with actual students’ exercise code. How much the integration effort itself will be depends
of course on the architecture of the systems in place.

Much more effort than into the technical implementation will have to go into content creation.
On the one side a substantial amount of new scanner rules will be needed, tailored towards the
requirements of web programming courses and tested on actual code submissions from prior
courses. On the other side also good explanations have to be created for the issues found with
those new rules, additionally to explanations for already existing rules which come already on
board with the used scanners.

Then again, the approach shows that it would not need a big effort to adopt other scanners,
either for PHP or other code. So the whole system would not have to be used for web program-
ming courses but could be used for any introductory programming contexts, which are probably
more common. Also the existing scanners for languages like C/C++, Java or Python, which are
popular in introductory programming contexts, might provide better out-of-the-box results than
the scanners found for PHP code.

Another big question that this research has to leave open for future investigations is, if the
adoption of SonarQube might provide a better fit, given that the vulnerability scanning for PHP
is increased and maybe is already much better for other languages in the current version. This
was not in scope for this thesis, but that would be a viable path for other thesis to follow. After
all, the display of issues and explanations in the SCRAP UI is already modelled after what
SonarQube provides in its new Security Hotspots view. And while SCRAP is rather lightweight
and therefore simple to integrate, SonarQube is a full-fledged project with an established user
and developer community.

101

Another issue, that would have to be solved on a socio-technical policy level within the organ-
isation, is that of coding standards. As for example PHP_CodeSniffer shows, there is already
ample support for checking against different coding standards. And the results are then much
more usable. And while adherence to a coding standard might seem to be too much overhead
for introductory programming courses, the research on software security education shows that
adoption of a secure coding mindset is most efficient, if secure coding is integrated from the
early start on. This is in line with research in software security and secure development life
cycles in general. The earlier the security perspective is introduced, the better and less prone
to vulnerabilities the results are.

So while SCRAP might be partly useful as an add-on to existing introductory programming
courses and other educational programming contexts, we know that security as an add-on just
does not do what we want it to do. So the main gain of a solution like SCRAP or the adoption
of SonarQube or other mature platforms will only be unfolded if the organisational context it is
deployed in also adopts its policies and didactic strategies. This then will probably be the most
effort in adoption of approaches likes SCRAP.

102

6 Future research

Based on current research in software security education, as described in section 2.3 and the
SCRAP prototype, described in chapter 5, there are a few questions end experiments which
could further explore the applicability of the SCRAP approach and shed some light on how to
improve actual integration of secure coding topics into computer science curricula.

First of all, the current approach focuses on web application development and therefore
specifically on PHP. A similar investigation that was conducted here for F/LOSS SAST tools
dealing with PHP code could find F/LOSS scanners for C/C++, Java and Python, or other lan-
guages which might provide significantly better out-of-the-box results.

Then it would be worthwhile, either with the current state of SCRAP or with additional scan-
ners for other languages included, to evaluate the SCRAP approach with other data sets than
the DVWA vulnerability files. It is very much likely that some other data sets might result in
better coverage of vulnerabilities. Also the results would provide additional examples for more
concrete scanner rules that could be developed. The best data set would, of course, be actual
code submitted by students in introductory (web) programming courses.

As the evaluation of the static analysers for PHP in section 5.3 showed, SonarQube provides
a framework that could be used instead of building a new platform like SCRAP, given that its
Security Hotspot feature gets improved and covers more PHP code vulnerabilities. It therefore
might be a valuable first step to investigate the necessary effort to adopt SonarQube in order to
produce satisfactory results for PHP code. Additionally it should be tested if it already provides
better results for other languages.

After SCRAP is improved, based on further research in the areas mentioned so far, its ap-
plication in a real-life scenario could be tested, based on programming courses at the FHTW.
A mix of quantitative evaluation based on online interview plus a few qualitative interviews
and situational analysis as applied in my former thesis computer scientists and their publics
(Klaura, 2014). The primary questions that this research should answer are 1) how well stu-
dents understand the generated feedback and 2) if they perceive the generated feedback as an
added value to the rest of the course materials.

Finally, an extension of the platform by smaller gamification features could increase student
engagement and interactivity, in order to increase retainment of the learned contexts and adop-
tion into daily coding practices.

103

7 Conclusion

The main contribution of this thesis is twofold:

1. There is no comprehensive overview of the field of software security education, at least
not one that is easy to find and accessible. While one such review was found for the area
of introductory programming in general (Sorva, 2013), the thesis at hand can now provide
a reasonable first overview for the state of the art of software security education. I hope
this can help other researchers new to this field. It certainly would have propelled the
SCRAP approach a bit further, if I had found such an overview.

2. The SCRAP prototype can be used as a basis for further research in this field. It is
designed in a RESTful style and with an API-first approach, that provides a common
basis for adoption and extensions with other components, as well as the integration into
existing systems. The opportunities for further research, as described in the previous
section, are manifold.

An important aspect highlighted by my research is one that is not new to IT security research
at all, but still so often neglected: integrating security as an add-on does not provide satisfactory
results. What my thesis shows specifically, in line with other researchers in this field, is that this
is also true for the issue of secure coding and software security education. Integrating security
and secure coding from the start on, into introductory programming courses, could be a main
lever to improve overall software security.

One problem that we have in this area, is that software security education is still significantly
under-researched, and more efforts have to be put into this field of research not only by indi-
vidual institutions who want to improve their own students’ capabilities to produce reliable and
secure software for our increasingly digitally connected world. Rather this has to be a collective
effort, and we would do good to foster more sustainable and cooperative research in this area.

Nevertheless, there are several promising results and projects out there, as my literature re-
view also showed. These could be seen as impulses to take up, to connect our research and
to work towards more standardised solutions and openly accessible databases for vulnerability
scanning and explanations tied to the needs of computer science education and introductory
programming contexts. Because one huge problem seems to be that from time to time there a
promising project starts, and then, at some point it ends, usually due to the ending of a funding
period. Sustainability is hard to achieve when everyone is trying to solve their problem on their
own and has to compete for limited funding.

The approach followed in this work, to come up with a new prototype platform called SCRAP,
to scan students’ submissions to coding exercises for vulnerabilities and to provide feedback
how to mitigate those, before this code is usually scrapped without further benefits other than

104

passing an exam, is certainly do-able, also for smaller organisations, as highlighted in more
detail in the SCRAP evaluation section 5.3. The main problem does not seem to be a technical
one of implementing appropriate toolchains an web services, but of producing useful content
and adopting organisational structures and didactic approaches. Future research might just
as well find that SCRAP should be scrapped in favour a platform like SonarQube - and given
a corresponding adoption of coding standards and policies and didactic methods at an higher
education institution this might prove very beneficial. The main problem yet stays the same:
if an institution wants to adopt this as an add-on to existing (educational and technological)
structures, in the hopes that no additional effort has to be taken in other areas, the approach
will most likely fail and the efforts to integrate it could have been used better somewhere else.

The SCRAP prototype that was developed is featured on the project websites https://scrap.
tantemalkah.at, with a bit of background information to this work and links to the repositories
for the prototype RESTful web service, the prototype web UI and the evaluation of the different
PHP scanners found. Also the API definition and documentation can be found there. The
evaluation section 5.3 describes in more detail the feasibility and effort needed to facilitate such
an approach. In short: it can certainly be done without too much effort on the technical side.
But, as elaborated above, a solution on the technical level alone will not prove satisfactory.

When it comes specifically to the available F/LOSS tools for scanning PHP code, the thesis
found, that on the whole they do not seem to have a good coverage of secure coding issues.
A significant effort would have to be made to improve them. This might be different for other
languages like C/C++, Java or Python. But the approach taken by SCRAP would certainly lend
itself to the adoption of other scanners and programming languages to scan.

105

https://scrap.tantemalkah.at
https://scrap.tantemalkah.at

Bibliography

Alonso, G., Casati, F., Kuno, H. & Machiraju, V., 2004. Web Services: Concepts, Architectures
and Applications. Berlin, Heidelberg: Springer Verlag.

Anis, A., Zulkernine, M., Iqbal, S., Liem, C. & Chambers, C., 2018. Securing Web Applications
with Secure Coding Practices and Integrity Verification. In: 2018 IEEE 16th Intl Conf on
Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence
and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). 2018, Athens, Greece:
IEEE, pp.618–625.

@anthonypjshaw, 2018. 10 common security gotchas in Python and
how to avoid them. [Online] Available at: <https://hackernoon.com/
10-common-security-gotchas-in-python-and-how-to-avoid-them-e19fbe265e03> [Ac-
cessed 2020-04-04].

Bishop, M., 2006. Teaching context in information security. Journal on Educational Resources
in Computing (JERIC), 6(3).

Bishop, M., Miloslavskaya, N. & Theocharidou, M. eds., 2015. Information Security Educa-
tion Across the Curriculum. IFIP Advances in Information and Communication Technology.
1st edition. Hamburg, Germany: Springer.

Boulay, B. D., 1986. Some difficulties of learning to program. Journal of Educational Computing
Research, 2(1), pp.57–73.

Bouwers, E., 2006. Php Sat Origin. [Online] Available at: <http://program-transformation.org/
PHP/PhpSatOrigin> [Accessed 2020-02-21].

Bruce-Lockhart, M. P. & Norvell, T. S., 2007. Developing Mental Models of Computer Pro-
gramming Interactively Via the Web. In: 37th Annual Frontiers In Education Conference -
Global Engineering: Knowledge Without Borders, Opportunities Without Passports. 2007,
Milwaukee, USA: IEEE, pp.S3H–3–S3H–8.

Buchele, S. F., 2013. Two Models of a Cryptography and Computer Security Class in a Liberal
Arts Context. In: Proceeding of the 44th ACM Technical Symposium on Computer Science
Education. 2013, Denver, USA: ACM, pp.543–548.

106

https://hackernoon.com/10-common-security-gotchas-in-python-and-how-to-avoid-them-e19fbe265e03
https://hackernoon.com/10-common-security-gotchas-in-python-and-how-to-avoid-them-e19fbe265e03
http://program-transformation.org/PHP/PhpSatOrigin
http://program-transformation.org/PHP/PhpSatOrigin

Bunke, M., 2015. Software-security patterns: Degree of maturity. In: Proceedings of the 20th
European Conference on Pattern Languages of Programs. 2015, Kaufbeuren, Germany:
ACM, pp.42:1–42:17.

Cappos, J. & Weiss, R., 2014. Teaching the Security Mindset with Reference Monitors. In: Pro-
ceedings of the 45th ACM Technical Symposium on Computer Science Education. 2014,
Atlanta, USA: ACM, pp.523–528.

CERN Computer Security Team, 2020. CERN Computer Security Information: Static
Code Analysis Tools. [Online] Available at: <https://security.web.cern.ch/security/
recommendations/en/code_tools.shtml> [Accessed 2020-02-21].

Chi, H., Jones, E. L. & Brown, J., 2013. Teaching Secure Coding Practices to STEM Students.
In: Proceedings of the 2013 on InfoSecCD ’13: Information Security Curriculum Develop-
ment Conference. 2013, Kennesaw, USA: ACM, pp.42:42–42:48.

Code Dx, 2018. Predicted web application vulnerabilities and cyberse-
curity trends for 2019. [Online] Available at: <https://codedx.com/
predicted-web-application-vulnerabilities-and-cybersecurity-trends-for-2019/> [Accessed
2019-09-11].

Conklin, W. A., White, G., Williams, D., Davis, R. & Cothren, C., 2016. Principles of Computer
Security. 4th edition. [eBook] : McGraw-Hill Education. Available at: <https://www.
mhprofessional.com/9780071836012-usa-principles-of-computer-security-fourth-edition>
[Accessed 2019-07-11].

Dewhurst Security, 2020. Damn Vulnerable Web Application (DVWA). [Online] Available at:
<http://www.dvwa.co.uk/> [Accessed 2020-02-13].

docker docs, 2020. Get Docker Engine - Community for Debian. [Online] Available at: <https:
//docs.docker.com/install/linux/docker-ce/debian/> [Accessed 2020-04-01].

Endler, M., 2020. mre/awesome-static-analysis: Static analysis tools for all programming
languages. [Online] Available at: <https://github.com/mre/awesome-static-analysis> [Ac-
cessed 2020-02-21].

FH Technikum Wien, 2019. Bachelor-Studiengang VZ Informatik Studienplan. [Online] Available
at: <https://www.technikum-wien.at/file/4712/download/> [Accessed 2019-09-13].

Fielding, R. T., 2000. Architectural Styles and the Design of Network-based Software Architec-
tures. [Dissertation] University of California, Irvine: University of California, Irvine. Available
at: <https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm> [Accessed 2020-04-23].

FIRST, 2019. Common Vulnerability Scoring System SIG. [Online] Available at: <https://www.
first.org/cvss/> [Accessed 2019-09-18].

107

https://security.web.cern.ch/security/recommendations/en/code_tools.shtml
https://security.web.cern.ch/security/recommendations/en/code_tools.shtml
https://codedx.com/predicted-web-application-vulnerabilities-and-cybersecurity-trends-for-2019/
https://codedx.com/predicted-web-application-vulnerabilities-and-cybersecurity-trends-for-2019/
https://www.mhprofessional.com/9780071836012-usa-principles-of-computer-security-fourth-edition
https://www.mhprofessional.com/9780071836012-usa-principles-of-computer-security-fourth-edition
http://www.dvwa.co.uk/
https://docs.docker.com/install/linux/docker-ce/debian/
https://docs.docker.com/install/linux/docker-ce/debian/
https://github.com/mre/awesome-static-analysis
https://www.technikum-wien.at/file/4712/download/
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.first.org/cvss/
https://www.first.org/cvss/

Giannakas, F., Kambourakis, G., Papasalouros, A. & Gritzalis, S., 2018. A critical review of 13
years of mobile game-based learning; a bi-monthly publication of the association for educa-
tional communications & technology. Educational Technology Research and Development,
66(2), pp.341–384.

github.com/phan/phan, 2020. Incrementally Strengthening Analysis. [Online] Available
at: <https://github.com/phan/phan/wiki/Incrementally-Strengthening-Analysis> [Accessed
2020-04-01].

github.com/squizlabs/PHP_CodeSniffer, 2016. squizlabs/PHP_CodeSniffer Wiki: Home. [On-
line] Available at: <https://github.com/squizlabs/PHP_CodeSniffer/wiki> [Accessed 2020-
04-01].

Hadnagy, C., 2011. Social Engineering: The Art of Human Hacking. Indianapolis, Indiana: Wiley
Publishing, Inc.

Helisch, M. & Pokoyski, D. eds., 2009. Security Awareness. Neue Wege zur erfolgreichen
Mitarbeiter-Sensibilisierung. Wiesbaden: Vieweg + Teubner.

Heymann, E. & Miller, B., 2018. Tutorial: Secure Coding Practices, Automated Assessment
Tools and the SWAMP. In: 2018 IEEE Cybersecurity Development (SecDev). 2018, Cam-
bridge, USA: IEEE, pp.124–125.

Hooshangi, S., Weiss, R. & Cappos, J., 2015. Can the Security Mindset Make Students Better
Testers?. In: Proceedings of the 46th ACM Technical Symposium on Computer Science
Education. 2015, Kansas City, USA: ACM, pp.404–409.

Horster, P., 1985. Kryptologie. Mannheim, Wien: BI-Wiss.-Verlag.

Howard, M. & Le Blanc, D., 2003. Writing secure code: practical strategies and proven tech-
niques for building secure applications in a networked world. 2nd edition. Redmond: Mi-
crosoft Press.

ISO, 2013. ISO/IEC 27001:2013. [Online] Available at: <https://www.iso.org/obp/ui/#iso:std:
iso-iec:27001:ed-2:v1:en> [Accessed 2019-09-15].

Jawed, M., 2019. Continuous security in DevOps environment: Integrating automated security
checks at each stage of continuous deployment pipeline. [Master Thesis] Technische Uni-
versität Wien. Available at: <https://repositum.tuwien.ac.at/urn:nbn:at:at-ubtuw:1-124776>
[Accessed 2020-04-23].

Jøsang, A., Ødegaard, M. & Oftedal, E., 2015. Cybersecurity Through Secure Software De-
velopment. In: Information Security Education Across the Curriculum. 2015, Hamburg,
Germany: Springer, pp.53–63.

108

https://github.com/phan/phan/wiki/Incrementally-Strengthening-Analysis
https://github.com/squizlabs/PHP_CodeSniffer/wiki
https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:en
https://repositum.tuwien.ac.at/urn:nbn:at:at-ubtuw:1-124776

Kaza, S. & Taylor, B., 2018. Introducing Secure Coding in Undergraduate (CS0, CS1, and
CS2) and High School (AP Computer Science A) Programming Courses (Abstract Only).
In: Proceedings of the 49th ACM Technical Symposium on Computer Science Education.
PT2018, Baltimore, USA: ACM, pp.1050–1050.

Kaza, S., Taylor, B. & Hawthorne, E. K., 2015. Introducing Secure Coding in CS0, CS1, and
CS2: Conference Workshop. J. Comput. Sci. Coll., 30(6), pp.11–12.

Kaza, S., Taylor, B. & Sherbert, K., 2018. Hello, World!—Code Responsibly. IEEE Security
Privacy, 16(1), pp.98–100.

Kernegger, K., 2013. Improving error detection rate using retesting in automated security testing
tools. [Master Thesis] Technische Universität Wien. Available at: <http://repositum.tuwien.
ac.at/urn:nbn:at:at-ubtuw:1-68534> [Accessed 2020-04-23].

Klaura, A. I. M., 2014. Computer scientists & their publics : on constructions of "participation"
and "publics" in participatory design and research. [Master Thesis] Universität Wien. Avail-
able at: <https://ubdata.univie.ac.at/AC12140416> [Accessed 2020-04-05].

Kriha, W. & Schmitz, R., 2008. Internet-Security aus Software-Sicht : Ein Leitfaden zur
Software-Erstellung für sicherheitskritische Bereiche. Berlin: Springer.

Lange, K., 2016. The Little Book on REST Services. Copenhagen. Available at: <https://www.
kennethlange.com/books/download.php?file=The-Little-Book-on-REST-Services.pdf>
[Accessed 2020-04-03].

Lavieri, E. & Verhas, P., 2017. Mastering Java 9 : Write reactive, modular, concurrent, and
secure code. Birmingham, Mumbai: Packt.

Lindmaier, C., 2016. Automatisierte Security Tests für Webapplikationen. [Master Thesis] Fach-
hochschule Technikum Wien. Available at: <http://permalink.obvsg.at/ftw/AC13291310>
[Accessed 2020-02-12].

Meng, N., Nagy, S., Yao, D., Zhuang, W. & Arango-Argoty, G., 2018. Secure Coding Practices
in Java: Challenges and Vulnerabilities. In: 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE). 2018, Gothenburg, Sweden: ACM, pp.372–383.

Miller, D., Whitlock, J., Gardiner, M., Ralphson, M., Ratovsky, R. & Sarid, U., 2020. OpenAPI
Specification Version 3.0.0. [Online] Available at: <http://spec.openapis.org/oas/v3.0.0>
[Accessed 2020-04-02].

Mirtes, O., 2016. PHPStan: Find Bugs In Your Code Without Writing Tests!. [Online] Available at:
<https://medium.com/@ondrejmirtes/phpstan-2939cd0ad0e3> [Accessed 2020-04-01].

Mirtes, O., 2018a. Looking for Sponsors of the Next Major PHPStan
Release!. [Online] Available at: <https://medium.com/@ondrejmirtes/

109

http://repositum.tuwien.ac.at/urn:nbn:at:at-ubtuw:1-68534
http://repositum.tuwien.ac.at/urn:nbn:at:at-ubtuw:1-68534
https://ubdata.univie.ac.at/AC12140416
https://www.kennethlange.com/books/download.php?file=The-Little-Book-on-REST-Services.pdf
https://www.kennethlange.com/books/download.php?file=The-Little-Book-on-REST-Services.pdf
http://permalink.obvsg.at/ftw/AC13291310
http://spec.openapis.org/oas/v3.0.0
https://medium.com/@ondrejmirtes/phpstan-2939cd0ad0e3
https://medium.com/@ondrejmirtes/looking-for-sponsors-of-the-next-major-phpstan-release-73204cce0666
https://medium.com/@ondrejmirtes/looking-for-sponsors-of-the-next-major-phpstan-release-73204cce0666
https://medium.com/@ondrejmirtes/looking-for-sponsors-of-the-next-major-phpstan-release-73204cce0666

looking-for-sponsors-of-the-next-major-phpstan-release-73204cce0666> [Accessed
2020-04-01].

Mirtes, O., 2018b. Next Chapter in PHPStan Saga. [Online] Available at: <https://medium.com/
@ondrejmirtes/next-chapter-in-phpstan-saga-3bfd7ffdb81d> [Accessed 2020-04-01].

MITRE, 2019. 2019 CWE Top 25 Most Dangerous Software Errors. [Online] Available at: <https:
//cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html> [Accessed 2019-09-21].

MITRE & SANS, 2011. 2011 CWE/SANS Top 25 Most Dangerous Software Errors. [Online]
Available at: <https://cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html> [Ac-
cessed 2019-09-21].

Morgridge Institute for Research, 2020. Software Assurance Marketplace: Tools. [Online] Avail-
able at: <https://www.mir-swamp.org/#tools/public> [Accessed 2020-02-21].

National Institute of Standards and Technology, 2020. Source Code Security Analyzers. [Online]
Available at: <https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html>
[Accessed 2020-02-21].

Nembhard, F., Carvalho, M. & Eskridge, T., 2019. Towards the application of recommender
systems to secure coding. Eurasip Journal on Information Security, 2019(9).

OWASP, 2010. OWASP Secure Coding Practices Quick Reference Guide. [Online] Available
at: <https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf>
[Accessed 2020-02-12].

OWASP, 2016. OWASP ASIDE Project. [Online] Available at: <https://www.owasp.org/index.
php/OWASP_ASIDE_Project> [Accessed 2019-09-06].

OWASP, 2017. OWASP Top 10 - 2017. The Ten Most Critical Web Application Security
Risks. [Online] Available at: <https://www.owasp.org/images/7/72/OWASP_Top_10-2017_
%28en%29.pdf.pdf> [Accessed 2019-09-13].

OWASP, 2019a. Buffer Overflow. [Online] Available at: <https://www.owasp.org/index.php/
Buffer_Overflow> [Accessed 2019-09-16].

OWASP, 2019b. OWASP Top Ten Project. [Online] Available at: <https://www.owasp.org/index.
php/Category:OWASP_Top_Ten_Project> [Accessed 2019-09-21].

OWASP, 2019c. Session Management Cheat Sheet. [Online] Available at: <https://www.owasp.
org/index.php/Session_Management_Cheat_Sheet> [Accessed 2019-09-15].

OWASP, 2020a. OWASP Application Security Verification Standard. [Online] Available
at: <https://owasp.org/www-project-application-security-verification-standard/> [Accessed
2020-02-12].

110

https://medium.com/@ondrejmirtes/looking-for-sponsors-of-the-next-major-phpstan-release-73204cce0666
https://medium.com/@ondrejmirtes/looking-for-sponsors-of-the-next-major-phpstan-release-73204cce0666
https://medium.com/@ondrejmirtes/looking-for-sponsors-of-the-next-major-phpstan-release-73204cce0666
https://medium.com/@ondrejmirtes/next-chapter-in-phpstan-saga-3bfd7ffdb81d
https://medium.com/@ondrejmirtes/next-chapter-in-phpstan-saga-3bfd7ffdb81d
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html
https://www.mir-swamp.org/#tools/public
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/index.php/OWASP_ASIDE_Project
https://www.owasp.org/index.php/OWASP_ASIDE_Project
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/index.php/Buffer_Overflow
https://www.owasp.org/index.php/Buffer_Overflow
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://owasp.org/www-project-application-security-verification-standard/

OWASP, 2020b. OWASP Cornucopia. [Online] Available at: <https://owasp.org/
www-project-cornucopia/> [Accessed 2020-02-12].

OWASP, 2020c. OWASP Mutillidae 2 Project. [Online] Available at: <https://wiki.owasp.org/
index.php/OWASP_Mutillidae_2_Project> [Accessed 2020-02-13].

OWASP, 2020d. OWASP Snakes And Ladders. [Online] Available at: <https://owasp.org/
www-project-snakes-and-ladders/> [Accessed 2020-02-12].

OWASP, 2020e. Source Code Analysis Tools. [Online] Available at: <https://owasp.org/
www-community/Source_Code_Analysis_Tools> [Accessed 2020-02-21].

Pancho-Festin, S. & Mendoza, M. J., 2014. Integrating computer security into the undergrad-
uate software engineering classes: Lessons learned. In: 2014 IEEE International Confer-
ence on Teaching, Assessment and Learning for Engineering (TALE). 2014, Wellington,
New Zealand: IEEE, pp.395–397.

Pawlowski, S. & Jung, Y., 2015. Social representations of cybersecurity by university students
and implications for instructional design. Journal of Information Systems Education, 26(4),
pp.281–294.

php.net, 2019a. PHP 5 ChangeLog. [Online] Available at: <https://www.php.net/ChangeLog-5.
php> [Accessed 2019-09-16].

php.net, 2019b. PHP 7 ChangeLog. [Online] Available at: <https://www.php.net/ChangeLog-7.
php> [Accessed 2019-09-16].

Pompon, R., 2018. Application Protection Report. [Online] Available at: <https://www.f5.com/
labs/articles/threat-intelligence/2018-Application-Protection-Report> [Accessed 2019-09-
11].

Popa, M., 2012. Requirements of a better secure program coding. Informatica Economica,
16(4), pp.93–104.

Positive Technologies, 2018. Web Application Vulnerabilities Statistics for 2017. [On-
line] Available at: <https://www.ptsecurity.com/upload/corporate/ww-en/analytics/
Web-application-vulnerabilities-2018-eng.pdf> [Accessed 2019-09-11].

Positive Technologies, 2019a. Penetration testing of corporate information systems: statis-
tics and findings, 2019. [Online] Available at: <https://www.ptsecurity.com/ww-en/analytics/
web-application-vulnerabilities-statistics-2019/> [Accessed 2019-09-11].

Positive Technologies, 2019b. Web application vulnerabilities: statistics for
2018. [Online] Available at: <https://www.ptsecurity.com/ww-en/analytics/
web-application-vulnerabilities-statistics-2019/> [Accessed 2019-09-11].

111

https://owasp.org/www-project-cornucopia/
https://owasp.org/www-project-cornucopia/
https://wiki.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://wiki.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://owasp.org/www-project-snakes-and-ladders/
https://owasp.org/www-project-snakes-and-ladders/
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://www.php.net/ChangeLog-5.php
https://www.php.net/ChangeLog-5.php
https://www.php.net/ChangeLog-7.php
https://www.php.net/ChangeLog-7.php
https://www.f5.com/labs/articles/threat-intelligence/2018-Application-Protection-Report
https://www.f5.com/labs/articles/threat-intelligence/2018-Application-Protection-Report
https://www.ptsecurity.com/upload/corporate/ww-en/analytics/Web-application-vulnerabilities-2018-eng.pdf
https://www.ptsecurity.com/upload/corporate/ww-en/analytics/Web-application-vulnerabilities-2018-eng.pdf
https://www.ptsecurity.com/ww-en/analytics/web-application-vulnerabilities-statistics-2019/
https://www.ptsecurity.com/ww-en/analytics/web-application-vulnerabilities-statistics-2019/
https://www.ptsecurity.com/ww-en/analytics/web-application-vulnerabilities-statistics-2019/
https://www.ptsecurity.com/ww-en/analytics/web-application-vulnerabilities-statistics-2019/

Pournaghshband, V., 2013. Teaching the Security Mindset to CS1 Students. In: Proceeding of
the 44th ACM Technical Symposium on Computer Science Education. 2013, Denver, USA:
ACM, pp.347–352.

Rahaman, S., Meng, N. & Yao, D., 2018. Tutorial: Principles and Practices of Secure Crypto
Coding in Java. In: 2018 IEEE Cybersecurity Development (SecDev). 2018, Cambridge,
USA: IEEE, pp.122–123.

Raina, S., Kaza, S. & Taylor, B., 2016. Security Injections 2.0: Increasing Ability to Apply Secure
Coding Knowledge Using Segmented and Interactive Modules in CS0. In: Proceedings of
the 47th ACM Technical Symposium on Computing Science Education. 2016, Memphis,
USA: ACM, pp.144–149.

Raina, S., Taylor, B. & Kaza, S., 2014. Interactive e-Learning Modules for Teaching Secure:
A Pilot Study (Abstract Only). In: Proceedings of the 45th ACM Technical Symposium on
Computer Science Education. 2014, Atlanta, USA: ACM, pp.719–720.

Raina, S., Taylor, B. & Kaza, S., 2015. Security Injections 2.0: Increasing Engagement and
Faculty Adoption Using Enhanced Secure Coding Modules for Lower-Level Programming
Courses. In: Information Security Education Across the Curriculum. 2015, Hamburg, Ger-
many: Springer, pp.64–74.

restfulapi.net, 2020. REST API Tutorial. [Online] Available at: <https://restfulapi.net/> [Accessed
2020-04-03].

Rohr, M., 2018. Sicherheit von Webanwendungen in der Praxis : Wie sich Unternehmen
schützen können – Hintergründe, Maßnahmen, Prüfverfahren und Prozesse. 2nd edition.
Wiesbaden: Springer Vieweg.

Sahu, D. & Tomar, D., 2017. Analysis of Web Application Code Vulnerabilities using Secure
Coding Standards. Arabian Journal for Science and Engineering, 42(2), pp.885–895.

Schuckert, F., Katt, B. & Langweg, H., 2017. Source Code Patterns of SQL Injection Vulnera-
bilities. In: Proceedings of the 12th International Conference on Availability, Reliability and
Security. 2017, Reggio Calabria, Italy: ACM, pp.72:1–72:7.

Snyder, C., Myer, T. & Southwell, M., 2010. Pro PHP Security : from Application Security
Principles to the Implementation of XSS Defenses. 2nd edition. New York: Apress.

SonarQube, 2020. Get Started in Two Minutes Guide. [Online] Available at: <https://docs.
sonarqube.org/latest/setup/get-started-2-minutes/> [Accessed 2020-04-01].

Sorva, J., 2012. Visual program simulation in introductory programming education; Visuaa-
linen ohjelmasimulaatio ohjelmoinnin alkeisopetuksessa. Aalto University publication se-
ries DOCTORAL DISSERTATIONS; 61/2012. [Dissertation] Aalto, Finland: Aalto Univer-

112

https://restfulapi.net/
https://docs.sonarqube.org/latest/setup/get-started-2-minutes/
https://docs.sonarqube.org/latest/setup/get-started-2-minutes/

sity; Aalto-yliopisto. Available at: <http://urn.fi/URN:ISBN:978-952-60-4626-6> [Accessed
2020-04-23].

Sorva, J., 2013. Notional machines and introductory programming education. ACM Transac-
tions on Computing Education (TOCE), 13(2), pp.1–31.

Sorva, J., Karavirta, V. & Malmi, L., 2013. A review of generic program visualization systems for
introductory programming education. ACM Trans. Comput. Educ., 13(4).

Stallings, W. & Brown, L., 2015. Computer security : principles and practice. 3rd edition. Boston:
Pearson.

Stallings, W. & Brown, L., 2018. Computer Security: Principles and Practice. 4th global edition.
New York: Pearson Education.

Stanford Report, 2012. Stanford launches Class2Go, an open-source platform for on-
line classes. [Online] Available at: <https://news.stanford.edu/news/2012/september/
class2go-online-platform-091212.html> [Accessed 2019-09-23].

Stivalet, B. & Fong, E., 2016. Large Scale Generation of Complex and Faulty PHP Test Cases.
In: 2016 IEEE International Conference on Software Testing, Verification and Validation
(ICST). 2016, Chicago: IEEE, pp.409–415.

swagger.io, 2020. Best Practices in API Design. [Online] Available at: <https://swagger.io/
resources/articles/best-practices-in-api-design/> [Accessed 2020-04-02].

Taylor, B. & Kaza, S., 2016. Security Injections@Towson: Integrating Secure Coding into Intro-
ductory Computer Science Courses. Trans. Comput. Educ., 16(4), pp.16:1–16:20.

Taylor, B., Bishop, M., Hawthorne, E. & Nance, K., 2013. Teaching Secure Coding: The Myths
and the Realities. In: Proceeding of the 44th ACM Technical Symposium on Computer
Science Education. 2013, Denver, USA: ACM, pp.281–282.

Technische Universität Wien, 2019a. Studienplan (Curriculum) für das Bachelorstudium Medi-
eninformatik und Visual Computing E 033 532. [Online] Available at: <https://informatics.
tuwien.ac.at/bachelor-ue033532.pdf> [Accessed 2019-09-13].

Technische Universität Wien, 2019b. Studienplan (Curriculum) für das Bachelorstudium Soft-
ware & Information Engineering E 033 534. [Online] Available at: <https://informatics.
tuwien.ac.at/bachelor-ue033534.pdf> [Accessed 2019-09-13].

Teto, J. K., Bearden, R. & Lo, D. C.-T., 2017. The Impact of Defensive Programming on I/O
Cybersecurity Attacks. In: Proceedings of the SouthEast Conference. 2017, Kennesaw,
USA: ACM, pp.102–111.

113

http://urn.fi/URN:ISBN:978-952-60-4626-6
https://news.stanford.edu/news/2012/september/class2go-online-platform-091212.html
https://news.stanford.edu/news/2012/september/class2go-online-platform-091212.html
https://swagger.io/resources/articles/best-practices-in-api-design/
https://swagger.io/resources/articles/best-practices-in-api-design/
https://informatics.tuwien.ac.at/bachelor-ue033532.pdf
https://informatics.tuwien.ac.at/bachelor-ue033532.pdf
https://informatics.tuwien.ac.at/bachelor-ue033534.pdf
https://informatics.tuwien.ac.at/bachelor-ue033534.pdf

Thalheimer, W., 2008. Providing Learners with Feedback—Part 1: Research-based
recommendations for training, education, and e-learning. [Online] Available at:
<https://www.worklearning.com/wp-content/uploads/2017/10/Providing_Learners_with_
Feedback_Part1_May2008.pdf> [Accessed 2019-09-04].

Theisen, C., Williams, L., Oliver, K. & Murphy-Hill, E., 2016. Software Security Education at
Scale. In: 2016 IEEE/ACM 38th International Conference on Software Engineering Com-
panion (ICSE-C). 2016, Austin, USA: IEEE, pp.346–355.

Towson University, 2017. Cybersecurity Modules: Security Injections|Cyber4All @Tow-
son: Workshops & Talks. [Online] Available at: <http://cis1.towson.edu/~cssecinj/
secure-coding-workshop/workshops/> [Accessed 2020-02-18].

Uskov, A. V., 2013a. Hands-On Teaching of Software and Web Applications Security. In: 2013
3rd Interdisciplinary Engineering Design Education Conference. 2013, Santa Clara, USA:
IEEE, pp.71–78.

Uskov, A. V., 2013b. Software and Web applications security: state-of-the-art courseware and
learning paradigm. In: 2013 IEEE Global Engineering Education Conference (EDUCON).
2013, Berlin, Germany: IEEE, pp.608–611.

van der Kleij, F. M., Eggen, T. J., Timmers, C. F. & Veldkamp, B. P., 2012. Effects of feedback in
a computer-based assessment for learning. Computers & Education, 58(1), pp.263 – 272.

van Niekerk, J. & Futcher, L., 2015. The Use of Software Design Patterns to Teach Secure
Software Design: An Integrated Approach. In: Information Security Education Across the
Curriculum. 2015, Hamburg, Germany: Springer, pp.75–83.

Veracode, 2018. State of Software Security. [Online] Available at: <https://www.veracode.com/
state-of-software-security-report> [Accessed 2019-09-11].

W3C Working Group, 2004. Web Services Architecture. [Online] Available at: <https://www.w3.
org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest> [Accessed 2020-04-03].

W3Techs, 2020. Usage statistics of server-side programming languages for websites. [On-
line] Available at: <https://w3techs.com/technologies/overview/programming_language>
[Accessed 2020-03-03].

Walkinshaw, N., 2017. Software Quality Assurance; Consistency in the Face of Complexity
and Change. Undergraduate Topics in Computer Science. Cham: Springer International
Publishing.

Weir, C., Rashid, A. & Noble, J., 2016. Reaching the Masses: A New Subdiscipline of App
Programmer Education. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 2016, Seattle, USA: ACM, pp.936–
939.

114

https://www.worklearning.com/wp-content/uploads/2017/10/Providing_Learners_with_Feedback_Part1_May2008.pdf
https://www.worklearning.com/wp-content/uploads/2017/10/Providing_Learners_with_Feedback_Part1_May2008.pdf
http://cis1.towson.edu/~cssecinj/secure-coding-workshop/workshops/
http://cis1.towson.edu/~cssecinj/secure-coding-workshop/workshops/
https://www.veracode.com/state-of-software-security-report
https://www.veracode.com/state-of-software-security-report
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
https://w3techs.com/technologies/overview/programming_language

Whitney, M., Lipford-Richter, H., Chu, B. & Zhu, J., 2015. Embedding Secure Coding Instruction
into the IDE: A Field Study in an Advanced CS Course. In: Proceedings of the 46th ACM
Technical Symposium on Computer Science Education. 2015, Kansas City, USA: ACM,
pp.60–65.

Wikipedia (EN), 2020. List of tools for static code analysis. [Online] Available at: <https://en.
wikipedia.org/wiki/List_of_tools_for_static_code_analysis> [Accessed 2020-02-21].

Williams, Laurie, 2016. CSC515 Software Security. [Online] Available at: <https://sites.google.
com/a/ncsu.edu/csc515-software-security/> [Accessed 2020-02-18].

Xie, T., Bishop, J., Tillmann, N. & de Halleux, J., 2015. Gamifying Software Security Education
and Training via Secure Coding Duels in Code Hunt. In: Proceedings of the 2015 Sympo-
sium and Bootcamp on the Science of Security. 2015, Urbana, USA: ACM, pp.26:1–26:2.

Zhu, J., Lipford, H. R. & Chu, B., 2013. Interactive Support for Secure Programming Education.
In: Proceeding of the 44th ACM Technical Symposium on Computer Science Education.
2013, Denver, USA: ACM, pp.687–692.

115

https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://sites.google.com/a/ncsu.edu/csc515-software-security/
https://sites.google.com/a/ncsu.edu/csc515-software-security/

List of Figures

Figure 1 Logarithmic distribution of search results in the TU library catalogue. 42
Figure 2 Logarithmic distribution of search results in the UV library catalogue. 43
Figure 3 Comparison of peer-reviewed search results between TU and UV. 43
Figure 4 Comparison of conference search results between TU and UV. 44
Figure 5 Comparison of books search results between TU and UV. 44
Figure 6 Accessing the SCRAP API on the SwaggerHub mocking server with curl . . . 53
Figure 7 Simplest use of graudit on a single file . 68
Figure 8 The graudit rules for SQL injections . 68
Figure 9 Results for graudit scans of 4 subfolders . 69
Figure 10 Simple call of phan with results . 70
Figure 11 Scanning the DVWA SQLi vulnerability folder with phan 70
Figure 12 Using yara to do PMF’s work with our own rule 73
Figure 13 Output of yara, when using our annotated rule on the sqli_low.php file 73
Figure 14 Output of PHPMD filtered through json, when run on the DVWA/dvwa folder . . 75
Figure 15 Two PHPStan scans of a single file with different analysis levels 76
Figure 16 PHPStan results in JSON notation . 77
Figure 17 Result of a simple PHP_CodeSniffer scan with the phpcs-security-audit v2

standard . 79
Figure 18 Differnt output options of PHP_CodeSniffer . 80
Figure 19 SonarQube project dashboard right after a scan of the test data set 82
Figure 20 The SonarQube dashboard showing Security Hotspots for the scanned project 83
Figure 21 Filtering the SonarQube scan results with jq . 85
Figure 22 Overall comparison of scanner tools . 87
Figure 23 Starting the SCRAP API server and accessing its root and /scanners endpoints 89
Figure 24 Accessing the /explanations endpoint with curl 89
Figure 25 Accessing a single explanation with curl . 90
Figure 26 Accessing a non-existing explanation with curl 90
Figure 27 Accessing the /scans endpoint without an API key with curl 91
Figure 28 Accessing the /scans endpoint with the public user and API key with curl 91
Figure 29 Accessing the scan listing of a non-public test user with curl 91
Figure 30 Accessing a specific scan with curl . 92
Figure 31 Accessing the issue listing for a specific scan 92
Figure 32 Accessing one specific issue of a scan . 93
Figure 33 Accessing the list of files for a specific scan . 94

116

Figure 34 Accessing the meta information for a specific file in a scan 94
Figure 35 Retrieving a specific file from a scan . 95
Figure 36 POSTing a new scan with Postman, facilitating only the yara scanner and in-

cluding the results . 96
Figure 37 POSTing a new scan with Postman, facilitating all scanners without immediate

results . 97
Figure 38 Listing of all available scans in the SCRAP web UI 97
Figure 39 View for one specific scan in the SCRAP web UI 98
Figure 40 Description section of an explanation in the SCRAP web UI 99
Figure 41 How to fix section of an explanation in the SCRAP web UI 99
Figure 42 References section of an explanation in the SCRAP web UI 100
Figure 43 Deleting a scan with curl . 100

117

List of Tables

Table 1 Vulnerability Categories of the 2017 OWASP Top 10. 12
Table 2 2019 CWE Top 25 Most Dangerous Software Errors. 13
Table 3 Reference lists for static code analysis tools. 19
Table 4 Overview of F/LOSS static PHP analysers. 20
Table 5 Results of TU Library Search. 41
Table 6 Results of UV Library Search. 41

118

List of Code

Code 1 Example code segment by Bruce–Lockhart and Norvell to explain notional ma-
chines . 23

Code 2 Listing of the available paths and methods in the SCRAP API 52
Code 3 Listing of the scrap–api–server repo’s contents 54
Code 4 Adding the routes to the Flask app . 55
Code 5 The Index resource of the server . 55
Code 6 Method to handle a request for a list of scans (in scan.py) 56
Code 7 Methods to handle requests for a single scan and to delete it (in scan.py) 56
Code 8 First part of the ListOfScans.post method (in scan.py), validating the request

data and the uploaded files . 57
Code 9 Second part of the ListOfScans.post method (in scan.py), storing the uploaded

files and populating the database files table . 58
Code 10 Third part of the ListOfScans.post method (in scan.py), starting the analysis and

storing and returning its results . 59
Code 11 ListOfScanners and Scanner classes (in scanners.py) 60
Code 12 PHP_CodeSniffer scanner wrapper class (in scanners.py) 61
Code 13 scrap.yar main rule file for the YARAScanner . 63
Code 14 YARAScanner wrapper class (in scanners.py) 63
Code 15 Setting up php–ast for phan . 69
Code 16 Setting up PHP Malware Finder . 71
Code 17 Simple scan of whole test data set with PMF . 71
Code 18 A simple YARA rule to find the vulnerability in sqli_low.php 71
Code 19 PMF scan with custon YARA rule . 72
Code 20 Calling yara directly with custom rule . 72
Code 21 Annotated YARA rule to find the vulnerability in sqli_low.php 72
Code 22 The simple setup of PHPMD . 74
Code 23 Simple scan of whole test data set with PHPMD 74
Code 24 Setup of PHPStan . 75
Code 25 Scanning a file and directory with PHPStan . 75
Code 26 Scanning a file and directory with PHPStan with the maximum analysis level . . 76
Code 27 Setup of PHP_CodeSniffer . 78
Code 28 Simple usage of PHP_CodeSniffer . 78
Code 29 Setup of the phpcs–security–audit v2 . 78
Code 30 Using PHP_CodeSniffer with the phpcs–security–audit v2 standard 78

119

Code 31 Starting the SonarQube server with docker . 81
Code 32 Setting up the SonarQube client to scan PHP code 81
Code 33 Scanning the test data set with SonarQube . 81
Code 34 Scanning each test data component in a separate SonarQube scan and retriev-

ing the results . 84
Code 35 Using the SonarQube web API to retrieve scan results 86
Code 36 Uploading a file to scan with curl . 94
Code 37 Listings/analyse.sh . 123
Code 38 Listings/makeplots.py . 124
Code 39 Listings/vuln–data–copy.sh . 126
Code 40 Listings/scrap_api.yaml . 129

120

List of Abbreviations

ACM Association for Computing Machinery

API Application Programming Interface

CDN Content delivery network

CD Continuous delivery

CLI Command-line interface

CS Computer Science

CSRF Cross-site request forgery

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

CWSS Common Weakness Scoring System

DCOM Distributed Component Object Model

DREAD Damage, Reproducibility, Exploitability, Affected users, Discoverability

DVWA Damn Vulnerable Web Application

ECTS European Credit Transfer and Accumulation System

FHTW Fachhochschule Technikum Wien

F/LOSS Free/Libre and Open Source Software

HTTP Hypertext Transfer Protocol

ICT Information & communication technologies

IDE Integrated development environment

IEEE Institute of Electrical and Electronics Engineers

IVM Integrity verification module

121

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

MOOC Massive open online course

MVC Model–view–controller

NVD National Vulnerability Database

OS Operating system

OWASP Open Web Application Security Project

PMF PHP Malware Finder

REST Representational state transfer

SAST Static application security testing

SCRAP Secure Code Review Automated Platform

SDLC Software development life cylce

SOAP Simple Object Access Protocol

SQL Structured Query Language

SQLi SQL injection

STEM Science, technology, engineering, and mathematics

STRIDE Spoofing, Tampering, Repudiation, Information disclosure, Denial of service,
Elevation of privilege

SWAMP Software Assurance Marketplace

TODO By the mighty witchcraftry of the mother of time! This part is not yet implemented.

TU Technische Universität Wien

UI User interface

URI Uniform Resource Identifier

UV University of Vienna

XML Extensible Markup Language

XSS Cross-site scripting

122

8 Appendix A: Helper scripts

analyse.sh:

1 #!/bin/bash

2

3 source $(dirname $0)/analyse.inc

4 BASEURL="http://scrap:9000"

5 SCANNER="${HOME}/scanners/sonar-scanner/bin/sonar-scanner"

6 TIMEOUT=10

7

8 ## This script is for evaluation purposes only!

9 ## Therefore no input checking is done. Make sure to use

10 ## a project (& token) name that does not exist yet.

11 project=$1

12 src=$2

13

14 log () {

15 echo "$(date): $1" 1>&2

16 }

17 logempty () {

18 echo 1>&2

19 }

20

21 # Right after analysis, the results may not yet be available, because

22 # the SonarQube server is still analyzing. We can use this function later

23 # to check if the analysis results are available.

24 getAnalysisCount () {

25 curl -s -u ${USERTOKEN} \

26 ${BASEURL}/api/project_analyses/search?project=${project} \

27 | jq .paging.total

28 }

29

30 log "Creating project ${project}:"

31 curl -s -u ${USERTOKEN} \

32 -F name=${project} \

33 -F project=${project} \

34 ${BASEURL}/api/projects/create \

35 1>&2

36 logempty

37

38 log "Creating scanning token for ${project}"

39 scantoken=$(curl -s -u ${USERTOKEN} \

40 -F name=${project} \

41 ${BASEURL}/api/user_tokens/generate \

123

42 | jq .token | tr -d ’"’)

43 log "Token: ${scantoken}"

44

45 log "Starting scanner"

46 ${SCANNER} -Dsonar.projectKey=${project} \

47 -Dsonar.host.url=${BASEURL} \

48 -Dsonar.login=${scantoken} \

49 -Dsonar.sources=${src} \

50 1>&2

51

52

53 # We have to wait some time until the SonarQube server finished

54 # the analysis and all results are available, before we can

55 # actually fetch the results.

56 aCount=$(getAnalysisCount)

57 timer=0

58 while [${aCount} -eq 0 -a ${timer} -le ${TIMEOUT}]; do

59 log "Analysis not done yet. Waiting a second."

60 ((timer=$timer+1))

61 if [${timer} -ge ${TIMEOUT}]; then

62 echo "Timeout reached! Aborting analysis."

63 exit 1

64 fi

65 sleep 1

66 aCount=$(getAnalysisCount)

67 done

68

69 log "Fetching analysis results"

70 curl -s -u ${USERTOKEN} \

71 ${BASEURL}/api/issues/search?componentKeys=${project}

72

73 log "Revoking temporary scan token ${scantoken}"

74 curl -s -u ${USERTOKEN} \

75 -F name=${project} \

76 ${BASEURL}/api/user_tokens/revoke \

77 1>&2

78

79 log "Removing project ${project}"

80 curl -s -u ${USERTOKEN} \

81 -F project=${project} \

82 ${BASEURL}/api/projects/delete \

83 | jq . \

84 1>&2

Code 37: Listings/analyse.sh

makeplots.py:

1 #!/usr/bin/python3

2

3 import pandas as pd

124

4 import matplotlib.pyplot as plt

5

6 csv = pd.read_csv(’results.csv’, sep=’;’)

7 full = csv.iloc[:, 0:5] # we don’t need the comments column

8

9 # to retain the index order as found in the CSV (which was the order of

evaluation)

10 index = [

11 ’graudit’,

12 ’phan’,

13 ’PMF’,

14 ’PHPMD’,

15 ’PHPStan’,

16 ’PHP_CodeSniffer’,

17 ’SonarQube’,

18]

19

20 # columns: scanner, direct hits, hits as unspecific, unspecific

21 overall = full.iloc[:, [0,2,3,4]]

22 overall = overall.groupby([’scanner name’]).sum().reindex(index)

23 overall.plot.bar(

24 title=’Comparison of overall scanner findings’,

25 rot=5,

26 figsize=(10,7),

27)

28 plt.yscale(’log’)

29

30 sqli = full[full[’test data set’].str.match(’^sqli$’)].iloc[:, [0,2,3,4]]

31 sqli.set_index(’scanner name’, inplace=True)

32 sqli.plot.bar(

33 title=’Comparison of findings for sqli folder’,

34 rot=10,

35 figsize=(7,6),

36)

37

38 sqli_blind = full[full[’test data set’].str.match(’^sqli_blind$’)].iloc[:,

[0,2,3,4]]

39 sqli_blind.set_index(’scanner name’, inplace=True)

40 sqli_blind.plot.bar(

41 title=’Comparison of findinds for sqli_blind folder’,

42 rot=10,

43 figsize=(7,6),

44)

45

46 xss_r = full[full[’test data set’].str.match(’^xss_r$’)].iloc[:, [0,2,3,4]]

47 xss_r.set_index(’scanner name’, inplace=True)

48 xss_r.plot.bar(

49 title=’Comparison of findings for xss_r folder’,

50 rot=10,

51 figsize=(7,6),

125

52)

53

54 xss_s = full[full[’test data set’].str.match(’^xss_s$’)].iloc[:, [0,2,3,4]]

55 xss_s.set_index(’scanner name’, inplace=True)

56 xss_s.plot.bar(

57 title=’Comparison of findings for xss_s folder’,

58 rot=10,

59 figsize=(7,6),

60)

61

62 # show all plots

63 plt.show()

Code 38: Listings/makeplots.py

vuln-data-copy.sh:

1 #!/bin/bash

2

3 SOURCEDIRS="sqli sqli_blind xss_d xss_r xss_s"

4 SOURCESINGLES="\

5 sqli/source/low.php \

6 sqli/source/medium.php \

7 sqli/source/high.php \

8 xss_r/source/low.php \

9 xss_r/source/medium.php \

10 xss_r/source/high.php \

11 "

12

13 usage () {

14 echo "Usage: $0 <DVWA-root> <target-dir>"

15 echo

16 echo " DVWA-root ... root directory of the DVWA source"

17 echo " target-dir ... directory to copy vulnerability test data to"

18 echo " (target-dir should not exist)"

19 echo

20 }

21

22 if ["$1" = "-h" -o "$1" = "--help" -o "$1" = "help"]; then

23 usage

24 exit

25 fi

26

27 if [! -d "$1"]; then

28 echo "First parameter has to be the directory containing DVWA!"

29 usage

30 exit 1

31 fi

32

33 if [-z "$2"]; then

34 echo "Second parameter has to be the target dir for vulnerability data"

126

35 usage

36 exit 1

37 fi

38

39 if [-e "$2"]; then

40 if [-d "$2"]; then

41 if [-z "$(ls -A "$2")"]; then

42 echo "Target dir exists and empty. All fine."

43 else

44 echo "The target directory already exists and has content. Aborting."

45 exit 1

46 fi

47 else

48 echo "$2 already exists and is not a directory. Aborting."

49 exit 1

50 fi

51 fi

52

53 for f in $SOURCEDIRS; do

54 if [! -d "$1/vulnerabilities/$f"]; then

55 echo "The directory $1/vulnerabilities/$f does not exist!"

56 exit 1

57 fi

58 done

59

60 for f in $SOURCESINGLES; do

61 if [! -f "$1/vulnerabilities/$f"]; then

62 echo "The file $1/vulnerabilities/$f does not exist!"

63 exit 1

64 fi

65 done

66

67 echo "All necessary files and directories seem to be there."

68 echo "Creating target folders and copying vulnerability test data."

69

70 if [! -d "$2"]; then

71 mkdir -p "$2"

72 fi

73

74 for f in $SOURCEDIRS; do

75 echo "’$1/vulnerabilities/$f’ -> ’$2/$f’"

76 cp -a "$1/vulnerabilities/$f" "$2/$f"

77 done

78

79 for f in $SOURCESINGLES; do

80 type=$(echo $f | cut -f 1 -d ’/’)

81 level=$(echo $f | cut -f 3 -d ’/’)

82 cp -av "$1/vulnerabilities/$f" "$2/${type}_${level}"

83 done

84

127

85 echo "DONE. Vulnerability test data is now available at ${PWD}/$2"

Code 39: Listings/vuln–data–copy.sh

128

9 Appendix B: SCRAP API definition

1 openapi: 3.0.0

2

3 info:

4 version: "1.0.0"

5 title: SCRAP - Secure Code Review Automated Platform

6 description: >-

7 SCRAP is a prototype for analysing code submissions by students in regards

8 to secure coding and to provide feedback. This API is the main interface

9 to the SCRAP server. Details on the whole project can be found on

10 scrap.tantemalkah.at.

11

12 servers:

13 - description: SCRAP evaluation server (rate limited for unauthenticated

accounts)

14 url: https://scrap.tantemalkah.at/api/v1

15 - description: SwaggerHub API Auto Mocking

16 url: https://virtserver.swaggerhub.com/tantemalkah/SCRAP/1.0.0

17

18 tags:

19 - name: auth

20 description: Only for authenticated users. The server might provide a

‘public‘ user.

21 externalDocs:

22 url: https://scrap.tantemalkah.at/docs/authentication.html

23 - name: public

24 description: Accessible without API key or other auth method.

25

26 paths:

27 /:

28 get:

29 summary: Retrieve the server and API meta information

30 description: >-

31 This endpoint serves as a sort of welcome page, providing some meta

32 information about the server and the API.

33 tags:

34 - public

35 responses:

36 ’200’:

37 description: Successful transfer of the server’s meta info object

38 content:

39 application/json:

40 schema:

129

41 $ref: ’#/components/schemas/Meta’

42

43 /scans:

44 get:

45 summary: List all available scans of a user

46 description: >-

47 Retrieve a list of your scans.

48

49 **Authentication**: This endpoint is only available with a valid API key.

50 The server might provide a ‘public‘ API key, which can be used for public

51 testing.

52 security:

53 - ApiKeyAuth: []

54 ApiUser: []

55 tags:

56 - auth

57 responses:

58 ’200’:

59 description: Successful transfer of a list of scans.

60 content:

61 application/json:

62 schema:

63 $ref: ’#/components/schemas/ListOfScans’

64 ’400’:

65 $ref: ’#/components/responses/BadRequest’

66 ’401’:

67 $ref: ’#/components/responses/Unauthorized’

68 ’404’:

69 $ref: ’#/components/responses/NotFound’

70

71 post:

72 summary: Submit a new scan

73 description: >-

74 This operation is used to submit a new scan. This will usually be either

75 a single PHP file or a gzipped tar archive containing at least one PHP

file.

76 Future version may adopt other scanners and languages. Consult the

documentation

77 of the server you POST to, which file types are acceptable. Version

1.0.0 is designed

78 for use with PHP only.

79

80 **Authentication**: This endpoint is only available with a valid API key.

81 The server might provide a _public_ API key, which can be used for public

82 testing. If you use the ‘public‘ as an API key, be aware, that your scan

83 will be visible to every other public user. But the server will usually

do

84 regular cleanups of public scans. Consult your server’s documentation on

85 if and how often those cleanups are done.

86 security:

130

87 - ApiKeyAuth: []

88 ApiUser: []

89 tags:

90 - auth

91 requestBody:

92 description: >-

93 If you POST to this endpoint, you have to submit at least a file

94 as part of a multipart/form-data body. Additionally you can use other

95 properties, described below, to customize the scan.

96 required: true

97 content:

98 multipart/form-data:

99 schema:

100 type: object

101 properties:

102 scanner:

103 type: string

104 description: >-

105 Use this to scan only with one of the available scanners.

106 If you omit this parameter, all deployed scanners will be

used.

107 withIssues:

108 type: boolean

109 description: >-

110 Set this to true, if the server should wait for the scan to

finish and

111 include a list of all issues found in the ‘issues‘ property

of the response.

112 file:

113 type: string

114 format: binary

115 description: >-

116 The file or archive you want to be scanned. This should

either

117 be a single PHP file (‘php‘), or a gzipped tar archive

(‘.tgz‘ or ‘.tar.gz‘).

118 Other files will not be accepted.

119 required:

120 - file

121 responses:

122 ’200’:

123 description: >-

124 Sucessful submission of a new scan. The new scan object

125 is returned in the response body.

126 content:

127 application/json:

128 schema:

129 $ref: ’#/components/schemas/Scan’

130 ’400’:

131 $ref: ’#/components/responses/BadRequest’

131

132 ’401’:

133 $ref: ’#/components/responses/Unauthorized’

134 ’404’:

135 $ref: ’#/components/responses/NotFound’

136 ’413’:

137 $ref: ’#/components/responses/FileTooBig’

138 ’415’:

139 $ref: ’#/components/responses/WrongFileType’

140

141 /scans/{id}:

142 get:

143 summary: Retrieve meta information for a single scan

144 description: >-

145 This operation provides the meta information for a single scan. This

146 includes the scan’s current stage and progress, the number of found

147 issues and files in the uploaded file/package and the timestamps when

148 the scan was created (right after the upload completed) and the analysis

149 was completed.

150 security:

151 - ApiKeyAuth: []

152 ApiUser: []

153 tags:

154 - auth

155 parameters:

156 - $ref: ’#/components/parameters/scanIdParam’

157 responses:

158 ’200’:

159 description: Sucessfully returned a scan object

160 content:

161 application/json:

162 schema:

163 $ref: ’#/components/schemas/Scan’

164 ’400’:

165 $ref: ’#/components/responses/BadRequest’

166 ’401’:

167 $ref: ’#/components/responses/Unauthorized’

168 ’404’:

169 $ref: ’#/components/responses/NotFound’

170

171 delete:

172 summary: Delete a single scan

173 description: >-

174 Delete one of your scans.

175

176 If the server provides a ‘public‘ API key, it might prohibit the deletion

177 of such _public_ scans and only delete them based on a regular interval.

178 security:

179 - ApiKeyAuth: []

180 ApiUser: []

181 tags:

132

182 - auth

183 parameters:

184 - $ref: ’#/components/parameters/scanIdParam’

185 responses:

186 ’204’:

187 description: Sucessfully deleted the scan.

188 ’400’:

189 $ref: ’#/components/responses/BadRequest’

190 ’401’:

191 $ref: ’#/components/responses/Unauthorized’

192 ’404’:

193 $ref: ’#/components/responses/NotFound’

194

195 /scans/{id}/files:

196 get:

197 summary: Receive listing of all files of a scan

198 description: >-

199 This operation returns all files that are part of a scan, that is, the

200 one file if a single PHP file was uploaded or all files from the

201 uploaded .tgz archive.

202 security:

203 - ApiKeyAuth: []

204 ApiUser: []

205 tags:

206 - auth

207 parameters:

208 - $ref: ’#/components/parameters/scanIdParam’

209 responses:

210 ’200’:

211 description: Successful transfer of a list of files

212 content:

213 application/json:

214 schema:

215 $ref: ’#/components/schemas/ListOfFiles’

216 ’400’:

217 $ref: ’#/components/responses/BadRequest’

218 ’401’:

219 $ref: ’#/components/responses/Unauthorized’

220 ’404’:

221 $ref: ’#/components/responses/NotFound’

222

223 /scans/{id}/files/{filepath}:

224 get:

225 summary: Retrieve a single file from a scan

226 description: >-

227 Returns the meta information of an uploaded file. The file itself

228 can be retrieved through its _blob_ endpoint, which is part of the

229 returned meta information.

230 security:

231 - ApiKeyAuth: []

133

232 ApiUser: []

233 tags:

234 - auth

235 parameters:

236 - $ref: ’#/components/parameters/scanIdParam’

237 - $ref: ’#/components/parameters/filePathParam’

238 responses:

239 ’200’:

240 description: Successful transfer of the file object

241 content:

242 application/json:

243 schema:

244 $ref: ’#/components/schemas/File’

245 ’400’:

246 $ref: ’#/components/responses/BadRequest’

247 ’401’:

248 $ref: ’#/components/responses/Unauthorized’

249 ’404’:

250 $ref: ’#/components/responses/NotFound’

251

252 /scans/{id}/blob/{filepath}:

253 get:

254 summary: Receive a single file from a scan

255 description: >-

256 Returns the file as it was uploaded (or extracted from the uploaded

archive)

257

258 The **media type** of the response

259 depends on the file, but in most cases it will be _application/x-php_,

especially

260 when the scan consists of a single file. If a whole project was uploaded,

261 it could be the case that other files than PHP files will be included in

262 an issue, depending on which scanners are available and how they are

configured.

263 security:

264 - ApiKeyAuth: []

265 ApiUser: []

266 tags:

267 - auth

268 parameters:

269 - $ref: ’#/components/parameters/scanIdParam’

270 - $ref: ’#/components/parameters/filePathParam’

271 responses:

272 ’200’:

273 description: Successful transfer of the file.

274 content:

275 application/x-php:

276 schema:

277 type: string

278 text/html:

134

279 schema:

280 type: string

281 text/css:

282 schema:

283 type: string

284 application/javascript:

285 schema:

286 type: string

287 text/markdown:

288 schema:

289 type: string

290 text/plain:

291 schema:

292 type: string

293 ’400’:

294 $ref: ’#/components/responses/BadRequest’

295 ’401’:

296 $ref: ’#/components/responses/Unauthorized’

297 ’404’:

298 $ref: ’#/components/responses/NotFound’

299

300 /scans/{id}/issues:

301 get:

302 summary: Receive a listing of all issues found in a scan

303 description: >-

304 This operation returns a list of issues that were found in a scan.

305 If the scan did not find any issues, an empty array of items will

306 be returned.

307 security:

308 - ApiKeyAuth: []

309 ApiUser: []

310 tags:

311 - auth

312 parameters:

313 - $ref: ’#/components/parameters/scanIdParam’

314 responses:

315 ’200’:

316 description: Successful transfer of a list of issues

317 content:

318 application/json:

319 schema:

320 $ref: ’#/components/schemas/ListOfIssues’

321 ’400’:

322 $ref: ’#/components/responses/BadRequest’

323 ’401’:

324 $ref: ’#/components/responses/Unauthorized’

325 ’404’:

326 $ref: ’#/components/responses/NotFound’

327

328 /scans/{id}/issues/{issueid}:

135

329 get:

330 summary: Receive a single issue from a scan

331 description: >-

332 This operation returns an issue object, which contains all information

333 to describe an issue found in the vulnerability scan. This contains:

334

335 - The scanner and its rule that found the issue plus infos on how to use

it standalone

336

337 - The type of the vulnerability that was found

338

339 - The slug to an explanation object which describes the vulnerability.

340

341 - An array of affected files containing:

342 - The file path

343 - An array of relevant lines in the file, including a description

344

345 For detailed informations on how the issues object works, refer to the

346 SCRAP documentation, that is linked in the ‘/‘ endpoint.

347 security:

348 - ApiKeyAuth: []

349 ApiUser: []

350 tags:

351 - auth

352 parameters:

353 - $ref: ’#/components/parameters/scanIdParam’

354 - in: path

355 name: issueid

356 required: true

357 schema:

358 type: integer

359 responses:

360 ’200’:

361 description: Successful transfer of an issue object

362 content:

363 application/json:

364 schema:

365 $ref: ’#/components/schemas/Issue’

366 ’400’:

367 $ref: ’#/components/responses/BadRequest’

368 ’401’:

369 $ref: ’#/components/responses/Unauthorized’

370 ’404’:

371 $ref: ’#/components/responses/NotFound’

372

373 /explanations:

374 get:

375 summary: Get a list of available explanations

376 tags:

377 - public

136

378 description: >-

379 This operation returns all explanations on code vulnerabilities

380 that are available in SCRAP. If you want to exclude stub explanations

381 which only provide links to further resources, use the ‘stub‘ parameter.

382 parameters:

383 - $ref: ’#/components/parameters/offsetParam’

384 - $ref: ’#/components/parameters/limitParam’

385 - in: query

386 name: stub

387 required: false

388 schema:

389 type: boolean

390 default: true

391 description: Set this to false, if you don’t want to exclude stub

explanations

392 responses:

393 ’200’:

394 description: Successful transfer of a list of explanations

395 content:

396 application/json:

397 schema:

398 $ref: ’#/components/schemas/ListOfExplanations’

399 ’400’:

400 $ref: ’#/components/responses/BadRequest’

401

402 /explanations/{slug}:

403 get:

404 summary: Retrieve an explanation to a vulnerability

405 description: >-

406 This operation returns an explanation object, which contains a

description

407 of a vulnerability and information on how to fix it. Additional

ressources

408 may be linked to in the ‘references‘ array.

409 tags:

410 - public

411 parameters:

412 - in: path

413 name: slug

414 required: true

415 schema:

416 type: string

417 responses:

418 ’200’:

419 description: Successful transfer of an explanation object

420 content:

421 application/json:

422 schema:

423 $ref: ’#/components/schemas/Explanation’

424 ’400’:

137

425 $ref: ’#/components/responses/BadRequest’

426 ’404’:

427 $ref: ’#/components/responses/NotFound’

428

429 /scanners:

430 get:

431 summary: Retrieve a list of available scanners

432 description: >-

433 This operation retrieves a list of all the scanners that are used by

434 the SCRAP server to scan for vulnerabilities. The list consists

435 of the full scanner objects. At the moment, with only a few scanners

436 deployed, there is no need for an extra endpoint to retrieve single

437 scanners.

438 tags:

439 - public

440 responses:

441 ’200’:

442 description: Successful transfer of a list of scanners

443 content:

444 application/json:

445 schema:

446 type: array

447 items:

448 $ref: ’#/components/schemas/Scanner’

449

450

451 components:

452 parameters:

453 offsetParam:

454 in: query

455 name: offset

456 required: false

457 description: The (0-indexed) number of the first item to retrieve. Only

use in combination with limit.

458 schema:

459 type: integer

460 minimum: 0

461 default: 0

462 limitParam:

463 in: query

464 name: limit

465 required: false

466 schema:

467 type: integer

468 minimum: 1

469 default: 20

470 description: The amount of items to retrieve starting from offset.

471 scanIdParam:

472 in: path

473 name: id

138

474 required: true

475 schema:

476 type: string

477 format: UUID

478 description: The UUID of a previously submitted scan.

479 filePathParam:

480 in: path

481 name: filepath

482 required: true

483 schema:

484 type: string

485 format: uri

486 description: >-

487 The path of a file within a scan. Either the uploaded filename itself,

488 or, if an archive was uploaded, the path of the file relative to the

489 archive’s root directory.

490

491 responses:

492 NotFound:

493 description: The specified resource was not found

494 content:

495 application/json:

496 schema:

497 $ref: ’#/components/schemas/Error’

498 example:

499 error:

500 code: "404"

501 message: "The [item] you requested does not exist."

502 additionalInfo: "Use /[item] to get a list of scans."

503 Unauthorized:

504 description: You are not authorized to access this resource

505 content:

506 application/json:

507 schema:

508 $ref: ’#/components/schemas/Error’

509 example:

510 error:

511 code: 401

512 message: "You are not authorized to access this resource"

513 BadRequest:

514 description: >-

515 At least one of the request parameters was malformed or the request

516 is otherwise not valid.

517 content:

518 application/json:

519 schema:

520 $ref: ’#/components/schemas/Error’

521 example:

522 error:

523 code: 400

139

524 message: "The parameter you provided is not valid."

525 FileTooBig:

526 description: >-

527 The uploaded file was too big. Especially if there is a ‘public‘ API key

in

528 use, these limits might be rather low. Consult the servers documentation

529 on if and how big the upload limits are.

530 content:

531 application/json:

532 schema:

533 $ref: ’#/components/schemas/Error’

534 example:

535 error:

536 code: 413

537 message: "The uploaded file is too big."

538 additionalInfo: "Public users only have file size limits for their

scans."

539 WrongFileType:

540 description: >-

541 SCRAP will only accept either single PHP files or

542 gzipped tar archives, containing at least on .php file.

543 content:

544 application/json:

545 schema:

546 $ref: ’#/components/schemas/Error’

547 example:

548 error:

549 code: 415

550 message: "The file type you provided is not valid."

551 additionalInfo: "User either .pdf or .tgz files."

552

553 schemas:

554 Meta:

555 type: object

556 properties:

557 api:

558 type: string

559 description: Name of the API

560 version:

561 type: string

562 description: Version of the API

563 openapi_file:

564 type: string

565 format: path

566 description: Path to a YAML representation of the API definition

567 definition:

568 type: string

569 format: uri

570 description: Link to an API desription, such as provided by Swagger UI

571 documentation:

140

572 type: string

573 format: uri

574 description: Link to the documentation of the SCRAP project

575 example:

576 api: "scrap"

577 version: "1.0.0"

578 openapi_file: "/static/scrap_api.yaml"

579 definition: "https://app.swaggerhub.com/apis/tantemalkah/SCRAP/1.0.0"

580 documentation: "https://scrap.tantemalkah.at/docs"

581

582 Paging:

583 type: object

584 properties:

585 count:

586 type: integer

587 minimum: 0

588 next:

589 type: string

590 format: uri

591 previous:

592 type: string

593 format: uri

594

595 Error:

596 type: object

597 properties:

598 error:

599 type: object

600 properties:

601 code:

602 type: string

603 message:

604 type: string

605 additionalInfo:

606 type: string

607 required:

608 - code

609 - message

610

611 ListOfScans:

612 type: object

613 properties:

614 paging:

615 allOf:

616 - $ref: ’#/components/schemas/Paging’

617 example:

618 count: 23

619 next: /api/v1/scans?limit=5&offset=10

620 previous: /api/v1/scans?limit=5&offset=0

621 items:

141

622 type: array

623 items:

624 type: string

625 format: uuid

626 example:

627 - "4fb9e66e-67a8-11ea-a2eb-983b8fc20c86"

628 - "16f324cc-2abb-455d-9561-7c460840b90a"

629 - "006739a6-66cf-4790-a89d-1bc60634e2c9"

630 - "2d37480c-67a8-11ea-a2eb-983b8fc20c86"

631 - "462e3fbe-67a8-11ea-a2eb-983b8fc20c86"

632

633 Scan:

634 type: object

635 properties:

636 id:

637 type: string

638 format: uuid

639 status:

640 type: object

641 properties:

642 stage:

643 type: string

644 enum: [loading, pending, analysing, done]

645 description: Describes the current stage in the analysis pipeline

646 percentage:

647 type: integer

648 minimum: 0

649 maximum: 100

650 description: Describes the progress in the current stage. Always

100 for _done_, and 0 for _pending_

651 issuesFound:

652 type: integer

653 minimum: 0

654 description: Number of issues that where found in this scan.

655 files:

656 type: integer

657 minimum: 1

658 description: >-

659 Number of files contained in the uploaded package.

660 1, if only a single file or a .tgz containing a single file was

uploaded.

661 created:

662 type: string

663 format: date-time

664 description: Time when the file/package to scan was uploaded

665 analysed:

666 type: string

667 format: date-time

668 description: Time when the scan analysis was completed

669

142

670 Scanner:

671 type: object

672 properties:

673 name:

674 type: string

675 description: "The name of the scanner"

676 slug:

677 type: string

678 description: "The slug representation of the scanner, which is used in

issue objects"

679 version:

680 type: string

681 description: "The version number of the scanner, that is deployed in

the SCRAP server"

682 uri:

683 type: string

684 format: uri

685 description: "A link to the scanners web site or repository"

686 comment:

687 type: string

688 format: markdown

689 description: "An optional comment describing how the scanner is used

in SCRAP"

690 example:

691 name: "PHP_CodeSniffer"

692 slug: "phpcs"

693 version: "3.5.4"

694 uri: "https://github.com/squizlabs/PHP_CodeSniffer"

695 comment: "Using the [phpcs-security-audit

v2](https://github.com/FloeDesignTechnologies/phpcs-security-audit)"

696

697 ListOfIssues:

698 type: object

699 properties:

700 paging:

701 allOf:

702 - $ref: ’#/components/schemas/Paging’

703 example:

704 count: 23

705 next: /api/v1/scans/42/issues?limit=3&offset=6

706 previous: /api/v1/scans/42/issues?limit=3&offset=0

707 items:

708 type: array

709 items:

710 type: object

711 properties:

712 id:

713 type: integer

714 minimum: 0

715 type:

143

716 type: string

717 example:

718 - id: 0

719 type: "SQLi"

720 - id: 1

721 type: "XSS"

722 - id: 2

723 type: "Remote File Inclusion"

724

725 Issue:

726 type: object

727 properties:

728 source:

729 type: object

730 properties:

731 scanner:

732 type: string

733 description: The slug of the scanner from which this issue was

generated

734 rule:

735 type: string

736 description: The specific rule of the scanner, that triggered this

issue

737 info:

738 type: string

739 format: uri

740 description: Link to a page with additional information on how to

use the scanner on its own

741 cli:

742 type: string

743 description: Command line that the SCRAP server used to analyse

the file(s)

744 required:

745 - scanner

746 - rule

747 example:

748 scanner: "phpcs"

749 rule: "Security.BadFunctions.Mysqli.WarnMysqlimysqli_query"

750 info:

"https://github.com/FloeDesignTechnologies/phpcs-security-audit"

751 cli: "php scanners/phpcs/phpcs.phar

--standard=scanners/phpcs-sa/Security -s --report=json

scrap-upload-tmp"

752 type:

753 type: string

754 description: What type of vulnerability was found

755 example: "SQLi"

756 explanation:

757 type: string

758 description: Slug to an explanation.

144

759 example: "sqli_mysqli_dynamic_param"

760 affectedFiles:

761 type: array

762 items:

763 type: object

764 properties:

765 path:

766 type: string

767 format: uri

768 lines:

769 type: array

770 items:

771 type: object

772 properties:

773 num:

774 type: integer

775 minimum: 0

776 linkedTo:

777 type: integer

778 minimum: 0

779 characters:

780 type: object

781 properties:

782 from:

783 type: integer

784 minimum: 0

785 to:

786 type: integer

787 minimum: 0

788 text:

789 type: string

790 description:

791 type: string

792 required:

793 - num

794 - characters

795 example:

796 - path: "index.php"

797 lines:

798 - num: 23

799 characters:

800 from: 5

801 to: 63

802 text: "$r = mysqli_query($conn, ’SELECT * FROM posts WHERE id

= ’.$id);"

803 description: "MYSQLi function mysqli_query() detected with

dynamic parameter"

804

805 ListOfFiles:

806 type: object

145

807 properties:

808 paging:

809 $ref: ’#/components/schemas/Paging’

810 items:

811 type: array

812 items:

813 type: string

814 format: uri

815 description: Link to the file’s blob endpoint

816 example:

817 paging:

818 count: 3

819 next: ""

820 previous: ""

821 items:

822 - "/api/v1/scans/4fb9e66e-67a8-11ea-a2eb-983b8fc20c86/files/index.php"

823 - "/api/v1/scans/4fb9e66e-67a8-11ea-a2eb-983b8fc20c86/files/style.css"

824 -

"/api/v1/scans/4fb9e66e-67a8-11ea-a2eb-983b8fc20c86/files/database.php"

825

826 File:

827 type: object

828 properties:

829 path:

830 type: string

831 format: uri

832 description: >-

833 File path in relation to the submitted scan root.

834 If a single file was submitted, then the path is the filename.

835 contentType:

836 type: string

837 format: media-type

838 description: >-

839 Media type of the file, as

840 [defined by

IANA](https://www.iana.org/assignments/media-types/media-types.xhtml).

841 PHP files will receive a media type of ‘application/x-php‘, as there

842 is no standardised media type for PHP files yet.

843 size:

844 type: integer

845 minimum: 0

846 description: Size of the file in byte.

847 blob:

848 type: string

849 format: uri

850 description: Link to the ‘blob‘ endpoint to download the file

851 example:

852 path: "index.php"

853 type: "application/x-php"

854 size: "3096"

146

855 blob: "/api/v1/scans/4fb9e66e-67a8-11ea-a2eb-983b8fc20c86/blob/index.php"

856

857 ListOfExplanations:

858 type: object

859 properties:

860 paging:

861 allOf:

862 - $ref: ’#/components/schemas/Paging’

863 example:

864 count: 23

865 next: /api/v1/explanations?limit=1&offset=6

866 previous: /api/v1/explanations?limit=1&offset=4

867 items:

868 type: array

869 items:

870 $ref: ’#/components/schemas/ShortExplanation’

871

872 ShortExplanation:

873 type: object

874 properties:

875 name:

876 type: string

877 slug:

878 type: string

879 type:

880 type: string

881 example:

882 name: SQL Injection through unsanitized ‘id‘ parameter

883 slug: sqli_unsanitized_id

884 type: SQLi

885

886 Explanation:

887 type: object

888 properties:

889 name:

890 type: string

891 slug:

892 type: string

893 type:

894 type: string

895 isStub:

896 type: boolean

897 shortDescription:

898 type: string

899 format: markdown

900 longDescription:

901 type: string

902 format: markdown

903 howToFix:

904 type: string

147

905 format: markdown

906 references:

907 type: array

908 items:

909 type: string

910 format: uri

911 example:

912 name: SQL Injection through unsanitized ‘id‘ parameter

913 slug: sqli_unsanitized_id

914 type: SQLi

915 isStub: true

916 shortDescription: >

917 If you use an ‘id‘ parameter without validation in an unparameterised

SQL

918 query, an attacker can easily inject malicous code.

919 longDescription: |

920 If you use an ‘id‘ parameter without validation in an unparameterised

SQL

921 query, an attacker can easily inject malicous code.

922

923 __What does this mean?__

924

925 If you take for example the following PHP code:

926 ‘‘‘php

927 $id = $_GET["id"];

928 # do some other stuff

929 # and then query for, e.g. a user with this id in the database:

930 $query = "SELECT first_name, last_name FROM users WHERE user_name =

’$id’;";

931 $result = mysqli_query($connection, $query);

932 ‘‘‘

933 What would happen, if someone submits ‘1’ OR 1=1; -- -‘ as a value?

934 This would lead to the following effective query:

935 ‘‘‘sql

936 SELECT first_name, last_name FROM users

937 WHERE user_name = ’1’ OR 1=!; -- -’

938 ‘‘‘

939 As the ‘-- -‘ makes the reminder of the original query (in this case

only)

940 the ‘’‘, we have a new query, with a ‘WHERE‘ clause that is always

true.

941 Therefore not only one row for a specific user will be returned, but

all

942 users.

943 But worse could be done, e.g. by using the ‘UNION‘ construct to find

out

944 about other tables data or even the whole database scheme.

945 howToFix: |

946 One of the best ways in PHP to safeguard against SQL injections is to

148

947 use [prepared

statements](https://www.php.net/manual/en/mysqli.quickstart.prepared

-statements.php). Instead of putting the parameters into the

948 query yourself, you can let the database library do that for you with

949 the ‘prepare‘ method of a mysqli database object:

950 ‘‘‘php

951 $db = new mysqli("example.com", "user", "password", "database");

952

953 # do some other stuff

954

955 # STEP 1: prepare the query statement

956 $stmt = $db->prepare(’SELECT first_name, last_name ’ .

957 ’FROM users WHERE user_name = ?’);

958 if (!$stmt) {

959 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;

960 }

961

962 # STEP 2: bind the parameter to the query statement

963 if (!$stmt->bind_param("i", $id)) {

964 echo "Binding parameters failed: (" . $stmt->errno . ") " .

$stmt->error;

965 }

966

967 # STEP 3: execute the query

968 if (!$stmt->execute()) {

969 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;

970 }

971 ‘‘‘

972 Apart from using such prepared statements it is also always advisable

973 to [validate your user

inputs](https://www.w3schools.com/php/php_form_validation.asp). You

can also use the [PHP filter

functions](https://www.w3schools.com/php/php_ref_filter.asp)

974 to check if the input conforms to what you expect.

975 references:

976 - https://www.w3schools.com/sql/sql_injection.asp

977 - https://www.php.net/manual/en/security.database.sql-injection.php

978 - https://en.wikipedia.org/wiki/SQL_injection

979 - http://cis1.towson.edu/~cssecinj/modules/other-modules/database/sql-

injection-introduction/

980 - https://xkcd.com/327/

981 - https://bobby-tables.com/

982 - https://owasp.org/www-community/attacks/SQL_Injection

983

984 securitySchemes:

985 ApiKeyAuth:

986 type: apiKey

987 in: header

988 name: X-API-KEY

989 ApiUser:

149

990 type: apiKey

991 in: header

992 name: X-API-USER

Code 40: Listings/scrap_api.yaml

150

	Intro
	Current State
	Secure Coding
	Vulnerabilities & State of Software Security

	Platforms and Tools
	PHP static code analysis

	Software Security Education
	Related Work

	Research Question
	Methods
	Literature review
	Process and initial findings
	Core and extended literature

	Prototyping RESTful Webservices

	Prototype
	Design
	Implementation
	REST API
	API server
	Scanner integration
	Web UI

	Evaluation
	Vulnerability test data
	Static analysers
	SCRAP

	Future research
	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Code
	List of Abbreviations
	Appendix A: Helper scripts
	Appendix B: SCRAP API definition

